Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids

被引:0
|
作者
Honglei Lang
Yunhe Sheng
Xiaomeng Xu
机构
[1] Peking University,Department of Mathematics
[2] Jilin University,Department of Mathematics
[3] Kavli Institute for Theoretical Physics China,Section of Mathematics
[4] CAS,undefined
[5] University of Geneva,undefined
来源
关键词
-algebras; Lie 2-algebras; Homotopy Poisson manifolds; Courant algebroids; Symplectic NQ-manifolds; Maurer–Cartan elements; 53D17; 17B99;
D O I
暂无
中图分类号
学科分类号
摘要
We study Maurer–Cartan elements on homotopy Poisson manifolds of degree n. They unify many twisted or homotopy structures in Poisson geometry and mathematical physics, such as twisted Poisson manifolds, quasi-Poisson g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak g$$\end{document}-manifolds, and twisted Courant algebroids. Using the fact that the dual of an n-term L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document}-algebra is a homotopy Poisson manifold of degree n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document}, we obtain a Courant algebroid from a 2-term L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document}-algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak g$$\end{document} via the degree 2 symplectic NQ-manifold T∗[2]g∗[1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*[2]\mathfrak g^*[1]$$\end{document}. By integrating the Lie quasi-bialgebroid associated to the Courant algebroid, we obtain a Lie-quasi-Poisson groupoid from a 2-term L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document}-algebra, which is proposed to be the geometric structure on the dual of a Lie 2-algebra. These results lead to a construction of a new 2-term L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document}-algebra from a given one, which could produce many interesting examples.
引用
收藏
页码:861 / 885
页数:24
相关论文
共 50 条
  • [21] Non-Commutative Batalin-Vilkovisky Algebras, Homotopy Lie Algebras and the Courant Bracket
    K. Bering
    Communications in Mathematical Physics, 2007, 274 : 297 - 341
  • [22] Homotopy morphisms between convolution homotopy Lie algebras
    Robert-Nicoud, Daniel
    Wierstra, Felix
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (04) : 1463 - 1520
  • [23] On LA-Courant Algebroids and Poisson Lie 2-Algebroids
    M. Jotz Lean
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [24] EXAMPLES OF HOMOTOPY LIE ALGEBRAS
    Bering, Klaus
    Lada, Tom
    ARCHIVUM MATHEMATICUM, 2009, 45 (04): : 265 - 277
  • [25] Poisson–Lie T-Duality and Courant Algebroids
    Pavol Ševera
    Letters in Mathematical Physics, 2015, 105 : 1689 - 1701
  • [26] The structure of homotopy Lie algebras
    Felix, Yves
    Halperin, Steve
    Thomas, Jean-Claude
    COMMENTARII MATHEMATICI HELVETICI, 2009, 84 (04) : 807 - 833
  • [27] Calculus on Lie algebroids, Lie groupoids and Poisson manifolds
    Marle, C. -M.
    DISSERTATIONES MATHEMATICAE, 2008, (457) : 5 - +
  • [28] Representations up to Homotopy from Weighted Lie Algebroids
    Bruce, Andrew James
    Grabowski, Janusz
    Vitagliano, Luca
    JOURNAL OF LIE THEORY, 2018, 28 (03) : 711 - 733
  • [29] Representation up to homotopy of hom-Lie algebroids
    Merati, S.
    Farhangdoost, M. R.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (05)
  • [30] Poisson-Lie T-Duality and Courant Algebroids
    Severa, Pavol
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (12) : 1689 - 1701