The Relaxed Game Chromatic Number of Graphs with Cut-Vertices

被引:0
|
作者
Elżbieta Sidorowicz
机构
[1] University of Zielona Góra,Faculty of Mathematics, Computer Science and Econometrics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Colouring game; Relaxed colouring game ; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
In the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game, two players, Alice and Bob alternately colour the vertices of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, using colours from a set C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}$$\end{document}, with |C|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal{C}|=r$$\end{document}. A vertex v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} can be coloured with c,c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c,c\in \mathcal{C}$$\end{document} if after colouring v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, the subgraph induced by all vertices with c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} has maximum degree at most d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}. Alice wins the game if all vertices of the graph are coloured. The d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic number of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, denoted by χg(d)(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _g^{(d)}(G)$$\end{document}, is the least number r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} for which Alice has a winning strategy for the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game on G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. A (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed edge-colouring game is the version of the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game which is played on edges a graph. The parameter associated with the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed edge-colouring game is called the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic index and denoted by (d)χg′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(d)}\chi '_g(G)$$\end{document}. We consider the game on graphs containing cut-vertices. For k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} we define a class of graphs Hk={G|everyblockofGhasatmostkvertices}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k =\{G|\mathrm{\;every \;block \;of\;} G \; \mathrm{has \;at \;most}\; k \;\mathrm{vertices}\}$$\end{document}. We find upper bounds on the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic number of graphs from Hk(k≥5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k\;(k\ge 5)$$\end{document}. Since the line graph of the forest with maximum degree k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} belongs to Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k$$\end{document}, from results for Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k$$\end{document} we obtain some new results for line graphs of forests, i.e., for the relaxed game chromatic index of forests. We prove that (d)χg′(T)≤Δ(T)+2-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(d)}\chi '_g(T)\le \Delta (T)+2-d$$\end{document} for any forest T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}. Moreover, we show that for forests with large maximum degree we can derive better bounds. These results improve the upper bound on the relaxed game chromatic index of forests obtained in Dunn (Discrete Math 307:1767–1775, 2007). Furthermore, we determine minimum d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} that guarantee Alice to win the (2,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,d)$$\end{document}-relaxed edge-colouring game on forests.
引用
收藏
页码:2381 / 2400
页数:19
相关论文
共 50 条
  • [31] Game chromatic number of some network graphs
    R. Alagammai
    V. Vijayalakshmi
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 391 - 401
  • [32] Game chromatic number of strong product graphs
    Enomoto, Hikoe
    Fujisawa, Jun
    Matsumoto, Naoki
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [33] ON THE GAME CHROMATIC NUMBER OF SOME CLASSES OF GRAPHS
    FAIGLE, U
    KERN, U
    KIERSTEAD, H
    TROTTER, WT
    ARS COMBINATORIA, 1993, 35 : 143 - 150
  • [34] The eternal game chromatic number of random graphs
    Dvorak, Vojtech
    Herrman, Rebekah
    van Hintum, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 95
  • [35] ON THE GAME CHROMATIC NUMBER OF SPARSE RANDOM GRAPHS
    Frieze, Alan
    Haber, Simcha
    Lavrov, Mikhail
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 768 - 790
  • [36] Game chromatic number of some network graphs
    Alagammai, R.
    Vijayalakshmi, V.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 391 - 401
  • [37] The game chromatic number of corona of two graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 899 - 904
  • [38] On game chromatic number of oriented network graphs
    Renganathan, Alagammai
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) : 55 - 59
  • [39] Game chromatic number of Cartesian product graphs
    Bartnicki, T.
    Bresar, B.
    Grytczuk, J.
    Kovse, M.
    Miechowicz, Z.
    Peterin, I.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [40] The Game Chromatic Number of Dense Random Graphs
    Keusch, Ralph
    Steger, Angelika
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):