The Relaxed Game Chromatic Number of Graphs with Cut-Vertices

被引:0
|
作者
Elżbieta Sidorowicz
机构
[1] University of Zielona Góra,Faculty of Mathematics, Computer Science and Econometrics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Colouring game; Relaxed colouring game ; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
In the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game, two players, Alice and Bob alternately colour the vertices of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, using colours from a set C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}$$\end{document}, with |C|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal{C}|=r$$\end{document}. A vertex v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} can be coloured with c,c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c,c\in \mathcal{C}$$\end{document} if after colouring v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, the subgraph induced by all vertices with c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} has maximum degree at most d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}. Alice wins the game if all vertices of the graph are coloured. The d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic number of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, denoted by χg(d)(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _g^{(d)}(G)$$\end{document}, is the least number r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} for which Alice has a winning strategy for the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game on G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. A (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed edge-colouring game is the version of the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game which is played on edges a graph. The parameter associated with the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed edge-colouring game is called the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic index and denoted by (d)χg′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(d)}\chi '_g(G)$$\end{document}. We consider the game on graphs containing cut-vertices. For k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} we define a class of graphs Hk={G|everyblockofGhasatmostkvertices}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k =\{G|\mathrm{\;every \;block \;of\;} G \; \mathrm{has \;at \;most}\; k \;\mathrm{vertices}\}$$\end{document}. We find upper bounds on the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic number of graphs from Hk(k≥5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k\;(k\ge 5)$$\end{document}. Since the line graph of the forest with maximum degree k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} belongs to Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k$$\end{document}, from results for Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k$$\end{document} we obtain some new results for line graphs of forests, i.e., for the relaxed game chromatic index of forests. We prove that (d)χg′(T)≤Δ(T)+2-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(d)}\chi '_g(T)\le \Delta (T)+2-d$$\end{document} for any forest T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}. Moreover, we show that for forests with large maximum degree we can derive better bounds. These results improve the upper bound on the relaxed game chromatic index of forests obtained in Dunn (Discrete Math 307:1767–1775, 2007). Furthermore, we determine minimum d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} that guarantee Alice to win the (2,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,d)$$\end{document}-relaxed edge-colouring game on forests.
引用
收藏
页码:2381 / 2400
页数:19
相关论文
共 50 条
  • [21] Game chromatic number of outerplanar graphs
    Guan, DJ
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 1999, 30 (01) : 67 - 70
  • [22] Circular game chromatic number of graphs
    Lin, Wensong
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4495 - 4501
  • [23] MINIMAL ACYCLIC DOMINATING SETS AND CUT-VERTICES
    Samodivkin, Vladmir
    MATHEMATICA BOHEMICA, 2005, 130 (01): : 81 - 88
  • [24] Finding cut-vertices in the square roots of a graph
    Ducoffe, Guillaume
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 158 - 174
  • [25] ON GRAPHS WITH MAXIMUM DIFFERENCE BETWEEN GAME CHROMATIC NUMBER AND CHROMATIC NUMBER
    Hollom, Lawrence
    arXiv, 2023,
  • [26] On graphs with maximum difference between game chromatic number and chromatic number
    Hollom, Lawrence
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [27] Finding Cut-Vertices in the Square Roots of a Graph
    Ducoffe, Guillaume
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 234 - 248
  • [28] 4-regular graphs without cut-vertices having the same path layer matrix
    Yang, YS
    Lin, XH
    Chen, ZQ
    Lu, WM
    JOURNAL OF GRAPH THEORY, 2003, 44 (04) : 304 - 310
  • [29] The relaxed game chromatic index of k-degenerate graphs
    Lundon, Charles
    DISCRETE MATHEMATICS, 2007, 307 (14) : 1767 - 1775
  • [30] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220