The Relaxed Game Chromatic Number of Graphs with Cut-Vertices

被引:0
|
作者
Elżbieta Sidorowicz
机构
[1] University of Zielona Góra,Faculty of Mathematics, Computer Science and Econometrics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Colouring game; Relaxed colouring game ; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
In the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game, two players, Alice and Bob alternately colour the vertices of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, using colours from a set C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}$$\end{document}, with |C|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal{C}|=r$$\end{document}. A vertex v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} can be coloured with c,c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c,c\in \mathcal{C}$$\end{document} if after colouring v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, the subgraph induced by all vertices with c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} has maximum degree at most d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}. Alice wins the game if all vertices of the graph are coloured. The d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic number of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, denoted by χg(d)(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _g^{(d)}(G)$$\end{document}, is the least number r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} for which Alice has a winning strategy for the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game on G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. A (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed edge-colouring game is the version of the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed colouring game which is played on edges a graph. The parameter associated with the (r,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,d)$$\end{document}-relaxed edge-colouring game is called the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic index and denoted by (d)χg′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(d)}\chi '_g(G)$$\end{document}. We consider the game on graphs containing cut-vertices. For k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} we define a class of graphs Hk={G|everyblockofGhasatmostkvertices}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k =\{G|\mathrm{\;every \;block \;of\;} G \; \mathrm{has \;at \;most}\; k \;\mathrm{vertices}\}$$\end{document}. We find upper bounds on the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-relaxed game chromatic number of graphs from Hk(k≥5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k\;(k\ge 5)$$\end{document}. Since the line graph of the forest with maximum degree k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} belongs to Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k$$\end{document}, from results for Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}_k$$\end{document} we obtain some new results for line graphs of forests, i.e., for the relaxed game chromatic index of forests. We prove that (d)χg′(T)≤Δ(T)+2-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(d)}\chi '_g(T)\le \Delta (T)+2-d$$\end{document} for any forest T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}. Moreover, we show that for forests with large maximum degree we can derive better bounds. These results improve the upper bound on the relaxed game chromatic index of forests obtained in Dunn (Discrete Math 307:1767–1775, 2007). Furthermore, we determine minimum d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} that guarantee Alice to win the (2,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,d)$$\end{document}-relaxed edge-colouring game on forests.
引用
收藏
页码:2381 / 2400
页数:19
相关论文
共 50 条
  • [1] The Relaxed Game Chromatic Number of Graphs with Cut-Vertices
    Sidorowicz, Elzbieta
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2381 - 2400
  • [2] On Local Antimagic Chromatic Number of Graphs with Cut-vertices
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 1 - 17
  • [3] On Sombor Index of Graphs with a Given Number of Cut-Vertices
    Hayat, Sakander
    Rehman, Ansar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 89 (02) : 437 - 450
  • [4] THE NUMBER OF CUT-VERTICES IN GRAPHS WITH GIVEN MINIMUM DEGREE
    CLARK, LH
    ENTRINGER, RC
    DISCRETE MATHEMATICS, 1990, 81 (02) : 137 - 145
  • [5] Relaxed game chromatic number of graphs
    Chou, CY
    Wang, WF
    Zhu, XD
    DISCRETE MATHEMATICS, 2003, 262 (1-3) : 89 - 98
  • [6] Wiener Index of Graphs with Fixed Number of Pendant or Cut-Vertices
    Pandey, Dinesh
    Patra, Kamal Lochan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 411 - 431
  • [7] Wiener index of graphs with fixed number of pendant or cut-vertices
    Dinesh Pandey
    Kamal Lochan Patra
    Czechoslovak Mathematical Journal, 2022, 72 : 411 - 431
  • [8] The relaxed game chromatic number of outerplanar graphs
    Dunn, C
    Kierstead, HA
    JOURNAL OF GRAPH THEORY, 2004, 46 (01) : 69 - 78
  • [9] The Relaxed Game Chromatic Number of Outerplanar Graphs
    Department of Mathematics, Linfield College, McMinnville, OR 97128, United States
    不详
    1600, 69-78 (May 2004):
  • [10] Relaxed game chromatic number of outer planar graphs
    Wu, Jiaojiao
    Zhu, Xuding
    ARS COMBINATORIA, 2006, 81 : 359 - 367