High-Accuracy Time Discretization of Stochastic Fractional Diffusion Equation

被引:0
|
作者
Xing Liu
机构
[1] Hubei University of Education,School of Mathematics and Economics, Bigdata Modeling and Intelligent Computing research institute
来源
关键词
High-accuracy time discretization; Modifying the semi-implicit Euler scheme; The regularity of nonlinear term; Mean-squared ; -norm; 26A33; 65M60; 65L20; 65C30;
D O I
暂无
中图分类号
学科分类号
摘要
A high-accuracy time discretization is discussed to numerically solve the nonlinear fractional diffusion equation forced by a space-time white noise. The main purpose of this paper is to improve the temporal convergence rate by modifying the semi-implicit Euler scheme. The solution of the equation is only Hölder continuous in time, which is disadvantageous to improve the temporal convergence rate. Firstly, the system is transformed into an equivalent form having better regularity than the original one in time. But the regularity of nonlinear term remains unchanged. Then, combining Lagrange mean value theorem and independent increments of Brownian motion leads to a higher accuracy discretization of nonlinear term which ensures the implementation of the proposed time discretization scheme without loss of convergence rate. Our scheme can improve the convergence rate from min{γ2α,12}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\min \{\frac{\gamma }{2\alpha },\frac{1}{2}\}}$$\end{document} to min{γα,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\min \{\frac{\gamma }{\alpha },1\}}$$\end{document} in the sense of mean-squared L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. The theoretical error estimates are confirmed by extensive numerical experiments.
引用
收藏
相关论文
共 50 条
  • [41] Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    REVISTA MEXICANA DE FISICA, 2019, 65 (01) : 82 - 88
  • [42] Numerical scheme with high order accuracy for solving a modified fractional diffusion equation
    Chen, Y.
    Chen, Chang-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 (244) : 772 - 782
  • [43] HIGH-ACCURACY VARIABLE TIME DELAY
    SHEIN, YV
    BELOV, VA
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1970, (04): : 1093 - &
  • [44] NUMERICAL ANALYSIS FOR STOCHASTIC TIME-SPACE FRACTIONAL DIFFUSION EQUATION DRIVEN BY FRACTIONAL GAUSSIAN NOISE
    Nie, Daxin
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023,
  • [46] A fast discontinuous finite element discretization for the space-time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 2043 - 2061
  • [47] Partially explicit time discretization for nonlinear time fractional diffusion equations
    Li, Wenyuan
    Alikhanov, Anatoly
    Efendiev, Yalchin
    Leung, Wing Tat
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113
  • [48] On a time fractional reaction diffusion equation
    Ahmad, B.
    Alhothuali, M. S.
    Alsulami, H. H.
    Kirane, M.
    Timoshin, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 199 - 204
  • [49] High-accuracy statistical simulation of planetary accretion: I. Test of the accuracy by comparison with the solution to the stochastic coagulation equation
    Satoshi Inaba
    Hidekazu Tanaka
    Keiji Ohtsuki
    Kiyoshi Nakazawa
    Earth, Planets and Space, 1999, 51 : 205 - 217
  • [50] High-accuracy statistical simulation of planetary accretion: I. Test of the accuracy by comparison with the solution to the stochastic coagulation equation
    Inaba, S
    Tanaka, H
    Ohtsuki, K
    Nakazawa, K
    EARTH PLANETS AND SPACE, 1999, 51 (03): : 205 - 217