Convergent Vector and Hermite Subdivision Schemes

被引:0
|
作者
Serge Dubuc
Jean-Louis Merrien
机构
[1] Departement de Mathematiques et de Statistique,
[2] C.P. 6128 Succursale Centre-ville,undefined
[3] Montreal (Quebec) H3C 3J7,undefined
[4] INSA de Rennes,undefined
[5] 20 av. des Buttes de Coesmes,undefined
[6] CS 14315,undefined
[7] 35043 Rennes cedex,undefined
来源
关键词
Subdivision; Convergence; Hermite interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
Hermite subdivision schemes have been studied by Merrien, Dyn, and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily.With this transformation, the study of convergence of Hermite subdivision schemes is reduced to that of vector stationary subdivision schemes. We propose a first criterion for C0-convergence for a large class of vector subdivision schemes. This gives a criterion for C1-convergence of Hermite subdivision schemes. It can be noticed that these schemes do not have to be interpolatory. We conclude by investigating spectral properties of Hermite schemes and other necessary/sufficient conditions of convergence.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [41] C1 ANALYSIS OF HERMITE SUBDIVISION SCHEMES ON MANIFOLDS
    Moosmueller, Caroline
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (05) : 3003 - 3031
  • [42] Generalized Taylor operators and polynomial chains for Hermite subdivision schemes
    Jean-Louis Merrien
    Tomas Sauer
    Numerische Mathematik, 2019, 142 : 167 - 203
  • [43] From Hermite to stationary subdivision schemes in one and several variables
    Jean–Louis Merrien
    Tomas Sauer
    Advances in Computational Mathematics, 2012, 36 : 547 - 579
  • [44] Dual Hermite subdivision schemes of de Rham-type
    Conti, Costanza
    Merrien, Jean-Louis
    Romani, Lucia
    BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 955 - 977
  • [45] Dual Hermite subdivision schemes of de Rham-type
    Costanza Conti
    Jean-Louis Merrien
    Lucia Romani
    BIT Numerical Mathematics, 2014, 54 : 955 - 977
  • [46] Generalized Taylor operators and polynomial chains for Hermite subdivision schemes
    Merrien, Jean-Louis
    Sauer, Tomas
    NUMERISCHE MATHEMATIK, 2019, 142 (01) : 167 - 203
  • [47] Convergence of vector subdivision schemes in Sobolev spaces
    Chen, DR
    Jia, RQ
    Riemenschneider, SD
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (01) : 128 - 149
  • [48] Characterization of some convergent bivariate subdivision schemes with nonnegative masks
    Cheng, Li
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (03) : 1100 - 1110
  • [49] A new characterization of convergent multivariate subdivision schemes with nonnegative masks
    Cheng, Li
    Zhou, Xinlong
    ARCHIV DER MATHEMATIK, 2017, 108 (02) : 197 - 207
  • [50] A new characterization of convergent multivariate subdivision schemes with nonnegative masks
    Li Cheng
    Xinlong Zhou
    Archiv der Mathematik, 2017, 108 : 197 - 207