Convergent Vector and Hermite Subdivision Schemes

被引:0
|
作者
Serge Dubuc
Jean-Louis Merrien
机构
[1] Departement de Mathematiques et de Statistique,
[2] C.P. 6128 Succursale Centre-ville,undefined
[3] Montreal (Quebec) H3C 3J7,undefined
[4] INSA de Rennes,undefined
[5] 20 av. des Buttes de Coesmes,undefined
[6] CS 14315,undefined
[7] 35043 Rennes cedex,undefined
来源
关键词
Subdivision; Convergence; Hermite interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
Hermite subdivision schemes have been studied by Merrien, Dyn, and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily.With this transformation, the study of convergence of Hermite subdivision schemes is reduced to that of vector stationary subdivision schemes. We propose a first criterion for C0-convergence for a large class of vector subdivision schemes. This gives a criterion for C1-convergence of Hermite subdivision schemes. It can be noticed that these schemes do not have to be interpolatory. We conclude by investigating spectral properties of Hermite schemes and other necessary/sufficient conditions of convergence.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [31] Curve and surface construction using Hermite subdivision schemes
    Costantini, Paolo
    Manni, Carla
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (07) : 1660 - 1673
  • [32] On the convergence of convolved vector subdivision schemes
    Conti, C
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (04) : 477 - 486
  • [33] Vector subdivision schemes and multiple wavelets
    Jia, RQ
    Riemenschneider, SD
    Zhou, DX
    MATHEMATICS OF COMPUTATION, 1998, 67 (224) : 1533 - 1563
  • [34] Polynomial Reproduction of Vector Subdivision Schemes
    Shen, Y. F.
    Yuan, D. H.
    Yang, S. Z.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [35] Regularity of multivariate vector subdivision schemes
    Charina, M
    Conti, C
    Sauer, T
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 97 - 113
  • [36] Regularity of multivariate vector subdivision schemes
    Maria Charina
    Costanza Conti
    Thomas Sauer
    Numerical Algorithms, 2005, 39 : 97 - 113
  • [37] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Mariantonia Cotronei
    Caroline Moosmüller
    Tomas Sauer
    Nada Sissouno
    Constructive Approximation, 2019, 50 : 341 - 366
  • [38] From Hermite to stationary subdivision schemes in one and several variables
    Merrien, Jean-Louis
    Sauer, Tomas
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (04) : 547 - 579
  • [39] Design of Hermite subdivision schemes aided by spectral radius optimization
    Han, B
    Overton, ML
    Yu, TPY
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02): : 643 - 656
  • [40] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Cotronei, Mariantonia
    Moosmuller, Caroline
    Sauer, Tomas
    Sissouno, Nada
    CONSTRUCTIVE APPROXIMATION, 2019, 50 (02) : 341 - 366