Convergent Vector and Hermite Subdivision Schemes

被引:0
|
作者
Serge Dubuc
Jean-Louis Merrien
机构
[1] Departement de Mathematiques et de Statistique,
[2] C.P. 6128 Succursale Centre-ville,undefined
[3] Montreal (Quebec) H3C 3J7,undefined
[4] INSA de Rennes,undefined
[5] 20 av. des Buttes de Coesmes,undefined
[6] CS 14315,undefined
[7] 35043 Rennes cedex,undefined
来源
关键词
Subdivision; Convergence; Hermite interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
Hermite subdivision schemes have been studied by Merrien, Dyn, and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily.With this transformation, the study of convergence of Hermite subdivision schemes is reduced to that of vector stationary subdivision schemes. We propose a first criterion for C0-convergence for a large class of vector subdivision schemes. This gives a criterion for C1-convergence of Hermite subdivision schemes. It can be noticed that these schemes do not have to be interpolatory. We conclude by investigating spectral properties of Hermite schemes and other necessary/sufficient conditions of convergence.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [1] Convergent vector and Hermite subdivision schemes
    Dubuc, S
    Merrien, JL
    CONSTRUCTIVE APPROXIMATION, 2006, 23 (01) : 1 - 22
  • [2] Increasing the smoothness of vector and Hermite subdivision schemes
    Moosmueller, Caroline
    Dyn, Nira
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (02) : 579 - 606
  • [3] Noninterpolatory Hermite subdivision schemes
    Han, B
    Yu, TPY
    Xue, YG
    MATHEMATICS OF COMPUTATION, 2005, 74 (251) : 1345 - 1367
  • [4] Scalar and Hermite subdivision schemes
    Dubuc, Serge
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) : 376 - 394
  • [5] Extended Hermite subdivision schemes
    Merrien, Jean-Louis
    Sauer, Tomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 343 - 361
  • [6] Two-order Hermite vector-interpolating subdivision schemes
    Fan M.
    Kang B.-S.
    Zhao H.
    Journal of Zhejiang University-SCIENCE A, 2006, 7 (9): : 1566 - 1571
  • [8] Analysis and design of Hermite subdivision schemes
    Bert Jüttler
    Ulrich Schwanecke
    The Visual Computer, 2002, 18 : 326 - 342
  • [9] Convergence of irregular Hermite subdivision schemes
    Zhao, Yao
    Chen, Di-Rong
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (05) : 372 - 381
  • [10] Hermite Subdivision Schemes and Taylor Polynomials
    Serge Dubuc
    Jean-Louis Merrien
    Constructive Approximation, 2009, 29 : 219 - 245