A novel trigger algorithm for wide-field-of-view imaging atmospheric Cherenkov technique experiments

被引:0
|
作者
Guang-Guang Xin
Hao Cai
Yi-Qing Guo
Tian-Lu Chen
Cheng Liu
Xiang-Li Qian
机构
[1] Wuhan University,School of Physics and Technology
[2] Key Laboratory of Particle Astrophysics,Ministry of Education
[3] Institute of High Energy Physics,School of Intelligent Engineering
[4] Chinese Academy of Sciences,undefined
[5] The Key Laboratory of Cosmic Rays (Tibet University),undefined
[6] Shandong Management University,undefined
来源
关键词
IACTs; Wide field of view (FoV); -ray burst; Cherenkov radiation;
D O I
暂无
中图分类号
学科分类号
摘要
The high-altitude detection of astronomical radiation (HADAR) experiment is a new Cherenkov observation technique with a wide field of view (FoV), aimed at observing the prompt emissions of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-ray bursts (GRBs). The bottleneck for this type of experiment can be found in determining how to reject the high rate of night-sky background (NSB) noise from random stars. In this work, we propose a novel method for rejecting noise, which considers the spatial properties of GRBs and the temporal characteristics of Cherenkov radiation. In space coordinates, the map between the celestial sphere and the fired photomultiplier tubes (PMTs) on the telescope’s camera can be expressed as f(δ(i,j))=δ′(i′,j′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\delta (i,j))= \delta ^\prime (i^\prime ,j^\prime )$$\end{document}, which means that a limited number of PMTs is selected from one direction. On the temporal scale, a 20-ns time window was selected based on the knowledge of Cherenkov radiation. This allowed integration of the NSB for a short time interval. Consequently, the angular resolution and effective area at 100 GeV in the HADAR experiment were obtained as 0.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} and 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^4$$\end{document} m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}, respectively. This method can be applied to all wide-FoV experiments.
引用
收藏
相关论文
共 50 条
  • [41] Performance of a wide field-of-view atmospheric Cherenkov telescope prototype based on a refractive lens
    Chen, Tianlu
    Liu, Cheng
    Gao, Qi
    Cai, Hui
    Wang, Zhen
    Zhang, Yi
    Feng, Youliang
    Wang, Qun
    Guo, Yiqing
    Hu, Hongbo
    Danzengluobu
    Liu, Maoyuan
    Li, Haijin
    Xin, Guangguang
    Gou, Quanbu
    Cai, Hao
    Shi, Ying
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 927 : 46 - 53
  • [42] Light Concentrator of the Wide Field of View Cherenkov Telescope
    Yang, Rui
    Sheng, XiYi
    Liao, BoLin
    OPTICAL DESIGN AND TESTING VII, 2016, 10021
  • [43] Wide-Field-of-View Multispectral Camera Design for Continuous Turfgrass Monitoring
    Smeesters, Lien
    Verbaenen, Jef
    Schifano, Luca
    Vervaeke, Michael
    Thienpont, Hugo
    Teti, Giancarlo
    Forconi, Alessio
    Lulli, Filippo
    SENSORS, 2023, 23 (05)
  • [44] Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer
    Wu, Lei
    Zhang, Chunmin
    Zhao, Baochang
    OPTICS COMMUNICATIONS, 2007, 273 (01) : 67 - 73
  • [45] DECONVOLUTION OF WIDE-FIELD-OF-VIEW MEASUREMENTS OF REFLECTED SOLAR-RADIATION
    SMITH, GL
    RUTAN, D
    JOURNAL OF APPLIED METEOROLOGY, 1990, 29 (02): : 109 - 122
  • [46] Design of Airborne Multi-Scale Wide-Field-of-View and High-Resolution Imaging System
    Li Jiangyong
    Feng Weixin
    Liu Fei
    Wei Yazhe
    Shao Xiaopeng
    ACTA OPTICA SINICA, 2021, 41 (02)
  • [47] Data acquisition and trigger system for imaging atmospheric Cherenkov telescopes of the LHAASO
    Zhang, J.
    Zhou, R.
    Zhang, S.
    Xiong, H.
    Hu, G.
    Li, A. Y.
    Liu, Z.
    Yang, C.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (02)
  • [48] Wide-field-of-view photonic bandgap filters micromachined from silicon
    Blaikie, RJ
    Drysdale, TD
    Chong, HMH
    Thayne, IG
    Cumming, DRS
    MICROELECTRONIC ENGINEERING, 2004, 73-4 : 357 - 361
  • [49] Evaluating Wide-Field-of-View Augmented Reality with Mixed Reality Simulation
    Ren, Donghao
    Goldschwendt, Tibor
    Chang, YunSuk
    Hollerer, Tobias
    2016 IEEE VIRTUAL REALITY CONFERENCE (VR), 2016, : 93 - 102
  • [50] Development of the imaging atmospheric Cherenkov technique at the whipple observatory
    Boyle, PJ
    RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2004, 13 : 319 - 325