A novel trigger algorithm for wide-field-of-view imaging atmospheric Cherenkov technique experiments

被引:0
|
作者
Guang-Guang Xin
Hao Cai
Yi-Qing Guo
Tian-Lu Chen
Cheng Liu
Xiang-Li Qian
机构
[1] Wuhan University,School of Physics and Technology
[2] Key Laboratory of Particle Astrophysics,Ministry of Education
[3] Institute of High Energy Physics,School of Intelligent Engineering
[4] Chinese Academy of Sciences,undefined
[5] The Key Laboratory of Cosmic Rays (Tibet University),undefined
[6] Shandong Management University,undefined
来源
关键词
IACTs; Wide field of view (FoV); -ray burst; Cherenkov radiation;
D O I
暂无
中图分类号
学科分类号
摘要
The high-altitude detection of astronomical radiation (HADAR) experiment is a new Cherenkov observation technique with a wide field of view (FoV), aimed at observing the prompt emissions of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-ray bursts (GRBs). The bottleneck for this type of experiment can be found in determining how to reject the high rate of night-sky background (NSB) noise from random stars. In this work, we propose a novel method for rejecting noise, which considers the spatial properties of GRBs and the temporal characteristics of Cherenkov radiation. In space coordinates, the map between the celestial sphere and the fired photomultiplier tubes (PMTs) on the telescope’s camera can be expressed as f(δ(i,j))=δ′(i′,j′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\delta (i,j))= \delta ^\prime (i^\prime ,j^\prime )$$\end{document}, which means that a limited number of PMTs is selected from one direction. On the temporal scale, a 20-ns time window was selected based on the knowledge of Cherenkov radiation. This allowed integration of the NSB for a short time interval. Consequently, the angular resolution and effective area at 100 GeV in the HADAR experiment were obtained as 0.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} and 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^4$$\end{document} m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}, respectively. This method can be applied to all wide-FoV experiments.
引用
收藏
相关论文
共 50 条
  • [21] Thickness bound for nonlocal wide-field-of-view metalenses
    Li, Shiyu
    Hsu, Chia Wei
    LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [22] Thickness bound for nonlocal wide-field-of-view metalenses
    Shiyu Li
    Chia Wei Hsu
    Light: Science & Applications, 11
  • [23] Hyperspectral wide-field-of-view imaging to study dynamic microcirculatory changes during hypoxia
    Lucas, Alfredo
    Munoz, Carlos
    Cabrales, Pedro
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2022, 323 (01): : H49 - H58
  • [24] Development of the atmospheric Cherenkov imaging technique
    Cawley, MF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 1996, 19 (06): : 959 - 963
  • [25] Bandwidth limits for wide-field-of-view achromatic metalenses
    Shastri, K.
    Monticonel, F.
    2021 FIFTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2021, : X408 - X410
  • [26] Compact wide-field-of-view imager with a designed disordered medium
    Nakamura, Tomoya
    Horisaki, Ryoichi
    Tanida, Jun
    OPTICAL REVIEW, 2015, 22 (01) : 19 - 24
  • [27] REALTIME TRACKING SYSTEM FOR THE WIDE-FIELD-OF-VIEW TELESCOPE PROJECT
    PARK, HS
    AXELROD, TS
    COLELLA, NJ
    COLVIN, ME
    LEDEBUHR, AG
    ACQUISITION, TRACKING, AND POINTING III, 1989, 1111 : 196 - 203
  • [28] Point spread function for the wide-field-of-view plenoptic cameras
    Jin, Xin
    Li, Kunyi
    Li, Chuanpu
    Sun, Xufu
    OPTICS EXPRESS, 2021, 29 (15): : 23764 - 23776
  • [29] Research and development of Wide-Field-of-View bionic compound eye photoelectric imaging detection technology
    Song Y.
    Hao Q.
    Cao J.
    Liu H.
    Liu Q.
    Li J.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (05):
  • [30] Design of an Ultra-Broadband, Wide-Field-of-View Push-Broom Imaging Radiometer
    Phenis, Adam
    Halterman, Alexander Cheff
    Nichols, Andrew
    Maccarrone, Alicia
    Mudge, Jason
    INTERNATIONAL OPTICAL DESIGN CONFERENCE 2021, 2021, 12078