A novel trigger algorithm for wide-field-of-view imaging atmospheric Cherenkov technique experiments

被引:0
|
作者
Guang-Guang Xin
Hao Cai
Yi-Qing Guo
Tian-Lu Chen
Cheng Liu
Xiang-Li Qian
机构
[1] Wuhan University,School of Physics and Technology
[2] Key Laboratory of Particle Astrophysics,Ministry of Education
[3] Institute of High Energy Physics,School of Intelligent Engineering
[4] Chinese Academy of Sciences,undefined
[5] The Key Laboratory of Cosmic Rays (Tibet University),undefined
[6] Shandong Management University,undefined
来源
关键词
IACTs; Wide field of view (FoV); -ray burst; Cherenkov radiation;
D O I
暂无
中图分类号
学科分类号
摘要
The high-altitude detection of astronomical radiation (HADAR) experiment is a new Cherenkov observation technique with a wide field of view (FoV), aimed at observing the prompt emissions of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-ray bursts (GRBs). The bottleneck for this type of experiment can be found in determining how to reject the high rate of night-sky background (NSB) noise from random stars. In this work, we propose a novel method for rejecting noise, which considers the spatial properties of GRBs and the temporal characteristics of Cherenkov radiation. In space coordinates, the map between the celestial sphere and the fired photomultiplier tubes (PMTs) on the telescope’s camera can be expressed as f(δ(i,j))=δ′(i′,j′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\delta (i,j))= \delta ^\prime (i^\prime ,j^\prime )$$\end{document}, which means that a limited number of PMTs is selected from one direction. On the temporal scale, a 20-ns time window was selected based on the knowledge of Cherenkov radiation. This allowed integration of the NSB for a short time interval. Consequently, the angular resolution and effective area at 100 GeV in the HADAR experiment were obtained as 0.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} and 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^4$$\end{document} m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}, respectively. This method can be applied to all wide-FoV experiments.
引用
收藏
相关论文
共 50 条
  • [1] A novel trigger algorithm for wide-field-of-view imaging atmospheric Cherenkov technique experiments
    Guang-Guang Xin
    Hao Cai
    Yi-Qing Guo
    Tian-Lu Chen
    Cheng Liu
    Xiang-Li Qian
    Nuclear Science and Techniques, 2022, (03) : 24 - 30
  • [2] A novel trigger algorithm for wide-field-of-view imaging atmospheric Cherenkov technique experiments
    Xin, Guang-Guang
    Cai, Hao
    Guo, Yi-Qing
    Chen, Tian-Lu
    Liu, Cheng
    Qian, Xiang-Li
    NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (03)
  • [3] Wide-field-of-view polarization interference imaging spectrometer
    Zhang, CM
    Zhao, BC
    Bin, XL
    APPLIED OPTICS, 2004, 43 (33) : 6090 - 6094
  • [4] Field-testing the wide-field-of-view Imaging spectrometer (WFIS)
    Haring, R
    Pollock, R
    Cross, R
    Sutin, B
    INFRARED SPACEBORNE REMOTE SENSING XII, 2004, 5543 : 283 - 292
  • [5] Design and analysis of wide-field-of-view polarization imaging spectrometer
    Zhang, Chunmin
    Mu, Tingkui
    Ren, Wenyi
    Zhang, Lin
    Liu, Ning
    OPTICAL ENGINEERING, 2010, 49 (04)
  • [6] Interference visibility of wide-field-of-view polarization interference imaging spetrometer
    Wu, Haiying
    Zhang, Sanxi
    Wang, Weiqiang
    Zhang, Weiguang
    Zhang, Yulun
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 (01): : 201 - 207
  • [7] Polarization calibration of wide-field-of-view interference polarization imaging spectrometer
    Gao, Peng
    Ai, Jingjing
    Hu, Xiaochen
    Chen, Qingying
    Wang, Xia
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2019, 224 : 44 - 54
  • [8] A 15° wide field of view imaging air Cherenkov telescope
    Mirzoyan, R.
    Andersen, M. I.
    ASTROPARTICLE PHYSICS, 2009, 31 (01) : 1 - 5
  • [9] Wide-Field-of-View Atom Probe Reconstruction
    Geiser, B. P.
    Larson, D. J.
    Oltman, E.
    Gerstl, S.
    Reinhard, D.
    Kelly, T. F.
    Prosa, T. J.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 292 - 293
  • [10] A Wide-Field-of-View Monocentric Light Field Camera
    Dansereau, Donald G.
    Schuster, Glenn
    Ford, Joseph
    Wetzstein, Gordon
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3757 - 3766