Realization of Period Maps of Planar Hamiltonian Systems

被引:0
|
作者
Carlos Rocha
机构
[1] Instituto Superior Técnico,Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática
关键词
Classification of attractors; nonlinear boundary value problems; Morse–Smale systems; Primary: 34B15; 35B41; 37G35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the set of 2π-periodic solutions of the ordinary differential equation u′′ + g(u) = 0 for a nonlinearity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in C^1(\mathbb{R})$$\end{document}, satisfying a dissipative condition of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u) /u < 0$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u| > M$$\end{document} , and under the generic assumption that the potential G, given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(u)=\int_0^u g(s) ds$$\end{document}, is a Morse function. Under these assumptions, we characterize the period maps realizable by planar Hamiltonian systems of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{\prime\prime}+g(u)=0$$\end{document} . Considering the Morse type of G, the set of periodic orbits in the phase space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,u^\prime)$$\end{document} is decomposed into disks and annular regions. Then, the realizable period maps are described in terms of sets of sequences of positive integers corresponding to the lap numbers of the 2π-periodic solutions. This leads to a characterization of the classes of Morse–Smale attractors that are realizable by dissipative semilinear parabolic equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t = u_{xx}+f(u,u_x)$$\end{document} defined on the circle, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in S^1$$\end{document} .
引用
收藏
页码:571 / 591
页数:20
相关论文
共 50 条
  • [1] Realization of period maps of planar Hamiltonian systems
    Rocha, Carlos
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (03) : 571 - 591
  • [2] On the period function of centers in planar polynomial Hamiltonian systems of degree four
    Jarque X.
    Villadelprat J.
    [J]. Qualitative Theory of Dynamical Systems, 2002, 3 (1) : 157 - 180
  • [3] Monotonicity criteria for an energy-period function in planar Hamiltonian systems
    Zevin, AA
    Pinsky, MA
    [J]. NONLINEARITY, 2001, 14 (06) : 1425 - 1432
  • [4] FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
    CHENG DaizhanXI Zairong Laboratory of Systems Science Institute of Systems Science Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
    [J]. Journal of Systems Science and Complexity., 2002, (01) - 68
  • [5] FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
    CHENG Daizhan
    [J]. Journal of Systems Science & Complexity, 2002, (01) : 61 - 68
  • [6] Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps
    Margheri, Alessandro
    Rebelo, Carlota
    Zanolin, Fabio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) : 3233 - 3257
  • [7] Hamiltonian cycles on bicolored random planar maps
    Duplantier, Bertrand
    Golinelli, Olivier
    Guitter, Emmanuel
    [J]. NUCLEAR PHYSICS B, 2023, 995
  • [8] NON-HAMILTONIAN CUBIC PLANAR MAPS
    FAULKNER, GB
    YOUNGER, DH
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A386 - A386
  • [9] Separatrix maps in Hamiltonian systems
    Piftankin, G. N.
    Treshchev, D. V.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (02) : 219 - 322
  • [10] Networks of planar Hamiltonian systems
    Tourigny, David S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 53 : 263 - 277