Realization of Period Maps of Planar Hamiltonian Systems

被引:0
|
作者
Carlos Rocha
机构
[1] Instituto Superior Técnico,Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática
关键词
Classification of attractors; nonlinear boundary value problems; Morse–Smale systems; Primary: 34B15; 35B41; 37G35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the set of 2π-periodic solutions of the ordinary differential equation u′′ + g(u) = 0 for a nonlinearity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in C^1(\mathbb{R})$$\end{document}, satisfying a dissipative condition of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u) /u < 0$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u| > M$$\end{document} , and under the generic assumption that the potential G, given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(u)=\int_0^u g(s) ds$$\end{document}, is a Morse function. Under these assumptions, we characterize the period maps realizable by planar Hamiltonian systems of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{\prime\prime}+g(u)=0$$\end{document} . Considering the Morse type of G, the set of periodic orbits in the phase space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,u^\prime)$$\end{document} is decomposed into disks and annular regions. Then, the realizable period maps are described in terms of sets of sequences of positive integers corresponding to the lap numbers of the 2π-periodic solutions. This leads to a characterization of the classes of Morse–Smale attractors that are realizable by dissipative semilinear parabolic equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t = u_{xx}+f(u,u_x)$$\end{document} defined on the circle, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in S^1$$\end{document} .
引用
收藏
页码:571 / 591
页数:20
相关论文
共 50 条
  • [41] Minimal period solutions of nonlinear Hamiltonian systems
    Fei, GH
    Qiu, QJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (07) : 821 - 839
  • [42] The local period function for Hamiltonian systems with applications
    Buzzi, Claudio A.
    Carvalho, Yagor Romano
    Gasull, Armengol
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 590 - 617
  • [43] From the Poincare-Birkhoff Fixed Point Theorem to Linked Twist Maps: Some Applications to Planar Hamiltonian Systems
    Pascoletti, Anna
    Zanolin, Fabio
    [J]. DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 197 - 213
  • [44] A period-doubling cascade precedes chaos for planar maps
    Sander, Evelyn
    Yorke, James A.
    [J]. CHAOS, 2013, 23 (03)
  • [45] CONVEX FUNCTIONS, HARMONIC MAPS, AND STABILITY OF HAMILTONIAN SYSTEMS
    GORDON, WB
    [J]. REPORT OF NRL PROGRESS, 1970, (SEP): : 15 - &
  • [46] New approaches to generalized Hamiltonian realization of autonomous nonlinear systems
    Yuzhen Wang
    Chunwen Li
    Daizhan Cheng
    [J]. Science in China Series F: Information Sciences, 2003, 46 : 431 - 444
  • [47] Balanced realization and model reduction of port-Hamiltonian systems
    Fujimoto, Kenji
    Kajiura, Hideo
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3088 - 3092
  • [48] New approaches to generalized Hamiltonian realization of autonomous nonlinear systems
    Wang, YZ
    Li, CW
    Cheng, DZ
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2003, 46 (06): : 431 - 444
  • [49] Separatrix Maps in Slow-Fast Hamiltonian Systems
    Bolotin, Sergey V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 322 (01) : 32 - 51
  • [50] SYMMETRIES OF HAMILTONIAN DYNAMICAL SYSTEMS, MOMENTUM MAPS AND REDUCTIONS
    Marle, Charles-Michel
    [J]. PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2014, : 11 - 52