On the period function of centers in planar polynomial Hamiltonian systems of degree four

被引:0
|
作者
Jarque X. [1 ]
Villadelprat J. [2 ]
机构
[1] Dept. d'Economia i d'Història Econòmica, Escola d'Empresarials de Sabadell, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona
[2] Dept. de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona
关键词
Hamiltonian systems; Isochronicity; Period function;
D O I
10.1007/BF02969337
中图分类号
学科分类号
摘要
In this paper we study non-degenerate centers of planar polynomial Hamiltonian systems. We prove that if the differential system has degree four then the period function of the center tends to infinity as we approach to the boundary of its period annulus. The proof takes advantage of the geometric properties of the period annulus in the Poincaŕe disc and it requires the study of the so called cubic-like Hamiltonian systems, namely the differential systems associated to a Hamiltonian function of the form H(x, y) = A(x) + B(x)y + C(x)y2 + D(x)y3. Concerning the centers of this family of differential systems, we obtain an analytic expression of its period function. From our point of view this expression constitutes the first step in order to find the isochronicity conditions in the family.
引用
收藏
页码:157 / 180
页数:23
相关论文
共 50 条
  • [1] Nonexistence of isochronous centers in planar polynomial Hamiltonian systems of degree four
    Jarque, X
    Villadelprat, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 180 (02) : 334 - 373
  • [2] Z2-SYMMETRIC PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS OF DEGREE 3 WITH NILPOTENT CENTERS
    Dias, Fabio Scalco
    Llibre, Jaume
    Valls, Claudia
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [3] Polynomial Hamiltonian systems of degree 3 with symmetric nilpotent centers
    Dias, Fabio Scalco
    Llibre, Jaume
    Valls, Claudia
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 60 - 77
  • [4] ON THE CONFIGURATIONS OF CENTERS OF PLANAR HAMILTONIAN KOLMOGOROV CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Xiao, Dongmei
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 611 - 644
  • [5] Linearizability of planar polynomial Hamiltonian systems
    Arcet, Barbara
    Gine, Jaume
    Romanovski, Valery G.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 63
  • [6] New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree
    Jaume Llibre
    Marzieh Mousavi
    Arefeh Nabavi
    [J]. Journal of Dynamical and Control Systems, 2019, 25 : 619 - 630
  • [7] New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree
    Llibre, Jaume
    Mousavi, Marzieh
    Nabavi, Arefeh
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) : 619 - 630
  • [8] Isochronous centers in planar polynomial systems
    Christopher, CJ
    Devlin, J
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) : 162 - 177
  • [9] Isochronicity and linearizability of planar polynomial Hamiltonian systems
    Llibre, Jaume
    Romanovski, Valery G.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1649 - 1662
  • [10] Monotonicity criteria for an energy-period function in planar Hamiltonian systems
    Zevin, AA
    Pinsky, MA
    [J]. NONLINEARITY, 2001, 14 (06) : 1425 - 1432