Non-Parametric Change-Point Estimation using String Matching Algorithms

被引:0
|
作者
Oliver Johnson
Dino Sejdinovic
James Cruise
Robert Piechocki
Ayalvadi Ganesh
机构
[1] University of Bristol,School of Mathematics
[2] University College London,Gatsby Computational Neuroscience Unit
[3] Heriot-Watt University Edinburgh Campus,The Department of Actuarial Mathematics and Statistics, and the Maxwell Institute for Mathematical Sciences
[4] University of Bristol,Centre for Communications Research
关键词
Change-point estimation; Entropy; Non-parametric; String matching; Primary 62L10; Secondary 62M09; 68W32;
D O I
暂无
中图分类号
学科分类号
摘要
Given the output of a data source taking values in a finite alphabet, we wish to estimate change-points, that is times when the statistical properties of the source change. Motivated by ideas of match lengths in information theory, we introduce a novel non-parametric estimator which we call CRECHE (CRossings Enumeration CHange Estimator). We present simulation evidence that this estimator performs well, both for simulated sources and for real data formed by concatenating text sources. For example, we show that we can accurately estimate the point at which a source changes from a Markov chain to an IID source with the same stationary distribution. Our estimator requires no assumptions about the form of the source distribution, and avoids the need to estimate its probabilities. Further, establishing a fluid limit and using martingale arguments.
引用
收藏
页码:987 / 1008
页数:21
相关论文
共 50 条
  • [1] Non-Parametric Change-Point Estimation using String Matching Algorithms
    Johnson, Oliver
    Sejdinovic, Dino
    Cruise, James
    Piechocki, Robert
    Ganesh, Ayalvadi
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (04) : 987 - 1008
  • [2] Change-point detection with non-parametric regression
    Horváth, L
    Kokoszka, P
    STATISTICS, 2002, 36 (01) : 9 - 31
  • [3] A NOTE ON NON-PARAMETRIC TESTS FOR THE CHANGE-POINT PROBLEM
    KOZIOL, JA
    BIOMETRICAL JOURNAL, 1987, 29 (07) : 791 - 794
  • [4] Two non-parametric tests for change-point problems
    Grégoire, G
    Hamrouni, Z
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (1-2) : 87 - 112
  • [5] Wavelet change-point estimation for long memory non-parametric random design models
    Wang, Lihong
    Cai, Haiyan
    JOURNAL OF TIME SERIES ANALYSIS, 2010, 31 (02) : 86 - 97
  • [6] Change-Point Tests for the Error Distribution in Non-parametric Regression
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (03) : 518 - 541
  • [7] A non-parametric Bayesian change-point method for recurrent events
    Li, Qing
    Guo, Feng
    Kim, Inyoung
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (16) : 2929 - 2948
  • [8] NON-PARAMETRIC ONLINE CHANGE-POINT DETECTION WITH KERNEL LMS BY RELATIVE DENSITY RATIO ESTIMATION
    Bouchikhi, Ikram
    Ferrari, Andre
    Richard, Cedric
    Bourrier, Anthony
    Bernot, Marc
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 538 - 542
  • [9] Non-Parametric Change-Point Method for Differential Gene Expression Detection
    Wang, Yao
    Wu, Chunguo
    Ji, Zhaohua
    Wang, Binghong
    Liang, Yanchun
    PLOS ONE, 2011, 6 (05):
  • [10] Non-parametric estimation for the location of a change-point in an otherwise smooth hazard function under random censoring
    Antoniadis, A
    Gijbels, I
    Macgibbon, B
    SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (03) : 501 - 519