General Form of Voronovskaja’s Theorem in Terms of Weighted Modulus of Continuity

被引:0
|
作者
Vijay Gupta
Gancho Tachev
机构
[1] Netaji Subhas Institute of Technology,Department of Mathematics
[2] University of Architecture,Department of Mathematics
[3] Civil Engineering and Geodesy,undefined
来源
Results in Mathematics | 2016年 / 69卷
关键词
Weighted modulus of continuity; linear positive operators; Voronovskaja’s theorem; Szász operators; Baskakov operators; Phillips operators; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we use weighted modulus ωφ(f;h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega_\varphi(f;\,h)}$$\end{document} introduced by Pǎltǎnea in (Bull Transilvania Univ Brasov 4(53).67–74, 2011), and defined as ωφ(f;h)=sup|f(x)-f(y)|:x≥0,y≥0,|x-y|≤hφx+y2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_\varphi(f;\,h)=\sup\left\{|f(x)-f(y)| : x \ge 0,y \ge 0, |x-y|\le h\varphi\left(\frac{x + y}{2} \right)\right\},$$\end{document}where h≥0φ(x)=x1+xm,x∈[0,∞),m∈N,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h\ge 0\varphi(x)=\frac{\sqrt{x}}{1+x^m}, x\in [0,\infty),m\in \mathbb{N},m\ge 2}$$\end{document}. We establish the general form of Voronovskaja’s theorem in terms of the modulus ωφ(f;h).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega_\varphi(f;h).}$$\end{document} In Sect. 3 applications are given for the Szász–Mirakyan, Baskakov operators and the Phillips operators.
引用
收藏
页码:419 / 430
页数:11
相关论文
共 50 条
  • [1] General Form of Voronovskaja's Theorem in Terms of Weighted Modulus of Continuity
    Gupta, Vijay
    Tachev, Gancho
    [J]. RESULTS IN MATHEMATICS, 2016, 69 (3-4) : 419 - 430
  • [2] Voronovskaja's theorem revisited
    Tachev, Gancho T.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 399 - 404
  • [3] VORONOVSKAJA'S THEOREM FOR SCHOENBERG OPERATOR
    Tachev, Gancho
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 49 - 59
  • [4] A Quantitative Variant of Voronovskaja's Theorem
    Gonska, Heiner
    Tachev, Gancho
    [J]. RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 287 - 294
  • [5] New estimates in Voronovskaja's theorem
    Tachev, Gancho
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (01) : 119 - 129
  • [6] A Quantitative Variant of Voronovskaja’s Theorem
    Heiner Gonska
    Gancho Tachev
    [J]. Results in Mathematics, 2009, 53 : 287 - 294
  • [7] ON THE DEGREE OF APPROXIMATION IN VORONOVSKAJA'S THEOREM
    Gonska, Heiner
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 103 - 115
  • [8] New estimates in Voronovskaja’s theorem
    Gancho Tachev
    [J]. Numerical Algorithms, 2012, 59 : 119 - 129
  • [9] Voronovskaja's theorem for functions with exponential growth
    Tachev, Gancho
    Gupta, Vijay
    Aral, Ali
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (03) : 459 - 468
  • [10] Differentiated Generalized Voronovskaja's Theorem in Compact Disks
    Gal, Sorin G.
    [J]. RESULTS IN MATHEMATICS, 2012, 61 (3-4) : 347 - 353