A latent process model for time series of attributed random graphs

被引:0
|
作者
Lee N.H. [1 ]
Priebe C.E. [1 ]
机构
[1] Johns Hopkins University, Baltimore, MD
关键词
Change point; Inference; Latent position model; Latent process model; Random graph;
D O I
10.1007/s11203-011-9058-y
中图分类号
学科分类号
摘要
We introduce a latent process model for time series of attributed random graphs for characterizing multiple modes of association among a collection of actors over time. Two mathematically tractable approximations are derived, and we examine the performance of a class of test statistics for an illustrative change-point detection problem and demonstrate that the analysis through approximation can provide valuable information regarding inference properties. © 2011 The Author(s).
引用
收藏
页码:231 / 253
页数:22
相关论文
共 50 条
  • [21] Multifractality in the random parameter model for multivariate time series
    Rodrigues Neto, Camilo
    Martins, Andre C. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (11) : 2198 - 2206
  • [22] A TIME-SERIES MODEL WITH RANDOM-COEFFICIENTS
    ABRAHAM, B
    MINDER, CE
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1982, 11 (12): : 1381 - 1391
  • [23] Hypothesis testing for equality of latent positions in random graphs
    Du, Xinjie
    Minh Tang
    BERNOULLI, 2023, 29 (04) : 3221 - 3254
  • [24] Phase transitions for detecting latent geometry in random graphs
    Brennan, Matthew
    Bresler, Guy
    Nagaraj, Dheeraj
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (3-4) : 1215 - 1289
  • [25] Phase transitions for detecting latent geometry in random graphs
    Matthew Brennan
    Guy Bresler
    Dheeraj Nagaraj
    Probability Theory and Related Fields, 2020, 178 : 1215 - 1289
  • [26] Hypothesis testing for equality of latent positions in random graphs
    Du, Xinjie
    Tang, Minh
    arXiv, 2021,
  • [27] Statistical inference on attributed random graphs: Fusion of graph features and content
    Grothendieck, John
    Priebe, Carey E.
    Gorin, Allen L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (07) : 1777 - 1790
  • [28] The probabilistic discriminative time-series model with latent variables and its application to industrial chemical process modeling
    Lu, Yusheng
    Peng, Xin
    Yang, Dan
    Jiang, Chao
    Zhong, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2021, 423 (423)
  • [29] Gaussian Process Latent Random Field
    Zhong, Guoqiang
    Li, Wu-Jun
    Yeung, Dit-Yan
    Hou, Xinwen
    Liu, Cheng-Lin
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 679 - 684
  • [30] The Flooding Time in Random Graphs
    Remco Van Der Hofstad
    Gerard Hooghiemstra
    Piet van Mieghem
    Extremes, 2002, 5 (2) : 111 - 129