Statistical inference on attributed random graphs: Fusion of graph features and content

被引:8
|
作者
Grothendieck, John [1 ]
Priebe, Carey E. [1 ]
Gorin, Allen L. [1 ]
机构
[1] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD 21218 USA
关键词
Information fusion; Statistical inference; Random graphs;
D O I
10.1016/j.csda.2010.01.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many problems can be cast as statistical inference on an attributed random graph. Our motivation is change detection in communication graphs. We prove that tests based on a fusion of graph-derived and content-derived metadata can be more powerful than those based on graph or content features alone For some basic attributed random graph models. we derive fusion tests from the likelihood ratio We describe the regions in parameter space where the fusion improves power, using both numeric results from selected small examples and analytic results on asymptotically large graphs (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:1777 / 1790
页数:14
相关论文
共 50 条
  • [1] Statistical inference on attributed random graphs: Fusion of graph features and content: An experiment on time series of Enron graphs
    Priebe, Carey E.
    Park, Youngser
    Marchette, David J.
    Conroy, John M.
    Grothendieck, John
    Gorin, Allen L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (07) : 1766 - 1776
  • [2] RANDOM ATTRIBUTED GRAPHS FOR STATISTICAL INFERENCE FROM CONTENT AND CONTEXT
    Gorin, A. L.
    Priebe, C. E.
    Grothendieck, J.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5430 - 5433
  • [3] Using the bootstrap for statistical inference on random graphs
    Thompson, Mary E.
    Ramirez, Lilia L. Ramirez
    Lyubchich, Vyacheslav
    Gel, Yulia R.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (01): : 3 - 24
  • [4] Statistical Inference on Random Dot Product Graphs: a Survey
    Athreya, Avanti
    Fishkind, Donniell E.
    Minh Tang
    Priebe, Carey E.
    Park, Youngser
    Vogelstein, Joshua T.
    Levin, Keith
    Lyzinski, Vince
    Qin, Yichen
    Sussman, Daniel L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [5] Statistical inference on random dot product graphs: A survey
    Athreya, Avanti
    Fishkind, Donniell E
    Tang, Minh
    Priebe, Carey E
    Park, Youngser
    Vogelstein, Joshua T.
    Levin, Keith
    Lyzinski, Vince
    Qin, Yichen
    Sussman, Daniel L
    Journal of Machine Learning Research, 2018, 18 : 1 - 92
  • [6] Graph Summarization for Attributed Graphs
    Wu, Ye
    Zhong, Zhinong
    Xiong, Wei
    Jing, Ning
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 502 - 506
  • [7] Symbolic graphs for attributed graph constraints
    Orejas, Fernando
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (03) : 294 - 315
  • [8] Statistical inference on graphs
    Biau, Gerard
    Bleakley, Kevin
    STATISTICS & RISK MODELING, 2006, 24 (02) : 209 - 232
  • [9] Local dependence in random graph models: characterization, properties and statistical inference
    Schweinberger, Michael
    Handcock, Mark S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (03) : 647 - 676
  • [10] On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs
    Cui, Hejie
    Lu, Zijie
    Li, Pan
    Yang, Carl
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3898 - 3902