On the index of appearance of a Lucas sequence

被引:0
|
作者
Carlo Sanna
机构
[1] Politecnico di Torino,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2024年 / 63卷
关键词
Asymptotic formula; Fibonacci numbers; Index of appearance; Lucas sequence; Prime numbers; Rank of appearance; Primary: 11B39; Secondary: 11N05; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let u=(un)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u} = (u_n)_{n \ge 0}$$\end{document} be a Lucas sequence, that is, a sequence of integers satisfying u0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0 = 0$$\end{document}, u1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1 = 1$$\end{document}, and un=a1un-1+a2un-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n = a_1 u_{n - 1} + a_2 u_{n - 2}$$\end{document} for every integer n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, where a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1$$\end{document} and a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2$$\end{document} are fixed nonzero integers. For each prime number p with p∤2a2Du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \not \mid 2a_2D_{\varvec{u}}$$\end{document}, where Du:=a12+4a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\varvec{u}}:= a_1^2 + 4a_2$$\end{document}, let ρu(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\varvec{u}}(p)$$\end{document} be the rank of appearance of p in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}, that is, the smallest positive integer k such that p∣uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \mid u_k$$\end{document}. It is well known that ρu(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\varvec{u}}(p)$$\end{document} exists and that p≡(Du∣p)(modρu(p))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv \big (D_{\varvec{u}} \mid p \big ) \pmod {\rho _{\varvec{u}}(p)}$$\end{document}, where (Du∣p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (D_{\varvec{u}} \mid p \big )$$\end{document} is the Legendre symbol. Define the index of appearance of p in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document} as ιu(p):=p-(Du∣p)/ρu(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _{\varvec{u}}(p):= \left( p - \big (D_{\varvec{u}} \mid p \big )\right) / \rho _{\varvec{u}}(p)$$\end{document}. For each positive integer t and for every x>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x > 0$$\end{document}, let Pu(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}_{\varvec{u}}(t, x)$$\end{document} be the set of prime numbers p such that p≤x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \le x$$\end{document}, p∤2a2Du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \not \mid 2a_2 D_{\varvec{u}}$$\end{document}, and ιu(p)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _{\varvec{u}}(p) = t$$\end{document}. Under the Generalized Riemann Hypothesis, and under some mild assumptions on u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}, we prove that #Pu(t,x)=AFu(t)Gu(t)xlogx+Oux(logx)2+xloglog(3x)φ(t)(logx)2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \#\mathcal {P}_{\varvec{u}}(t, x) = A\, F_{\varvec{u}}(t) \, G_{\varvec{u}}(t) \, \frac{x}{\log x} + O_{\varvec{u}}\!\left( \frac{x}{(\log x)^2} + \frac{x \log \log (3x)}{\varphi (t) (\log x)^2}\right) , \end{aligned}$$\end{document}for all positive integers t and for all x>t3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x > t^3$$\end{document}, where A is the Artin constant, Fu(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\varvec{u}}(\cdot )$$\end{document} is a multiplicative function, and Gu(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\varvec{u}}(\cdot )$$\end{document} is a periodic function (both these functions are effectively computable in terms of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}). Furthermore, we provide some explicit examples and numerical data.
引用
收藏
页码:1199 / 1223
页数:24
相关论文
共 50 条
  • [41] On Lucas sequence terms of the form kx2
    Ribenboim, P
    McDaniel, WL
    NUMBER THEORY, 2001, : 293 - 303
  • [42] ON THE LUCAS SEQUENCE EQUATIONS Vn = kVm AND Un = kUm
    Keskin, Refik
    Siar, Zafer
    COLLOQUIUM MATHEMATICUM, 2013, 130 (01) : 27 - 38
  • [43] Iterated binomial transform of the k-Lucas sequence
    Yilmaz, Nazmiye
    Taskara, Necati
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (05) : 864 - 873
  • [44] Index appearance record with preorders
    Kretinsky, Jan
    Meggendorfer, Tobias
    Waldmann, Clara
    Weininger, Maximilian
    ACTA INFORMATICA, 2022, 59 (05) : 585 - 618
  • [45] Factoriangular numbers in balancing and Lucas-balancing sequence
    Rayaguru, Sai Gopal
    Odjoumani, Japhet
    Panda, Gopal Krishna
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 865 - 878
  • [46] On the Lucas Difference Sequence Spaces Defined by Modulus Function
    Karakas, Murat
    Akbas, Tayfur
    Karakas, Ayse Metin
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (01): : 235 - 244
  • [47] Factoriangular numbers in balancing and Lucas-balancing sequence
    Sai Gopal Rayaguru
    Japhet Odjoumani
    Gopal Krishna Panda
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 865 - 878
  • [48] CHAOTIC APPEARANCE OF THE AE INDEX
    SHAN, LH
    HANSEN, P
    GOERTZ, CK
    SMITH, RA
    GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (02) : 147 - 150
  • [49] On k-generalized Lucas sequence with its triangle
    Acikel, Abdullah
    Amrouche, Said
    Belbachir, Hacene
    Irmak, Nurettin
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1129 - 1143
  • [50] SUMS OF PRODUCTS OF THE TERMS OF THE GENERALIZED LUCAS SEQUENCE {Vkn}
    Kilic, Emrah
    Ulutas, Yucel Turker
    Omur, Nese
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (02): : 147 - 161