On the index of appearance of a Lucas sequence

被引:0
|
作者
Carlo Sanna
机构
[1] Politecnico di Torino,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2024年 / 63卷
关键词
Asymptotic formula; Fibonacci numbers; Index of appearance; Lucas sequence; Prime numbers; Rank of appearance; Primary: 11B39; Secondary: 11N05; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let u=(un)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u} = (u_n)_{n \ge 0}$$\end{document} be a Lucas sequence, that is, a sequence of integers satisfying u0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0 = 0$$\end{document}, u1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1 = 1$$\end{document}, and un=a1un-1+a2un-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n = a_1 u_{n - 1} + a_2 u_{n - 2}$$\end{document} for every integer n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, where a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1$$\end{document} and a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2$$\end{document} are fixed nonzero integers. For each prime number p with p∤2a2Du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \not \mid 2a_2D_{\varvec{u}}$$\end{document}, where Du:=a12+4a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\varvec{u}}:= a_1^2 + 4a_2$$\end{document}, let ρu(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\varvec{u}}(p)$$\end{document} be the rank of appearance of p in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}, that is, the smallest positive integer k such that p∣uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \mid u_k$$\end{document}. It is well known that ρu(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\varvec{u}}(p)$$\end{document} exists and that p≡(Du∣p)(modρu(p))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv \big (D_{\varvec{u}} \mid p \big ) \pmod {\rho _{\varvec{u}}(p)}$$\end{document}, where (Du∣p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (D_{\varvec{u}} \mid p \big )$$\end{document} is the Legendre symbol. Define the index of appearance of p in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document} as ιu(p):=p-(Du∣p)/ρu(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _{\varvec{u}}(p):= \left( p - \big (D_{\varvec{u}} \mid p \big )\right) / \rho _{\varvec{u}}(p)$$\end{document}. For each positive integer t and for every x>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x > 0$$\end{document}, let Pu(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}_{\varvec{u}}(t, x)$$\end{document} be the set of prime numbers p such that p≤x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \le x$$\end{document}, p∤2a2Du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \not \mid 2a_2 D_{\varvec{u}}$$\end{document}, and ιu(p)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _{\varvec{u}}(p) = t$$\end{document}. Under the Generalized Riemann Hypothesis, and under some mild assumptions on u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}, we prove that #Pu(t,x)=AFu(t)Gu(t)xlogx+Oux(logx)2+xloglog(3x)φ(t)(logx)2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \#\mathcal {P}_{\varvec{u}}(t, x) = A\, F_{\varvec{u}}(t) \, G_{\varvec{u}}(t) \, \frac{x}{\log x} + O_{\varvec{u}}\!\left( \frac{x}{(\log x)^2} + \frac{x \log \log (3x)}{\varphi (t) (\log x)^2}\right) , \end{aligned}$$\end{document}for all positive integers t and for all x>t3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x > t^3$$\end{document}, where A is the Artin constant, Fu(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\varvec{u}}(\cdot )$$\end{document} is a multiplicative function, and Gu(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\varvec{u}}(\cdot )$$\end{document} is a periodic function (both these functions are effectively computable in terms of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}). Furthermore, we provide some explicit examples and numerical data.
引用
收藏
页码:1199 / 1223
页数:24
相关论文
共 50 条
  • [31] ON ZECKENDORF RELATED PARTITIONS USING THE LUCAS SEQUENCE
    Hung Viet Chu
    Luo, David C.
    Miller, Steven J.
    FIBONACCI QUARTERLY, 2022, 60 (02): : 111 - 119
  • [32] Diophantine triples in a Lucas-Lehmer sequence
    Gueth, Krisztian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2018, 49 : 85 - 100
  • [33] A combinatorial method for developing Lucas sequence identities
    Croot, Ernie
    ANATOMY OF INTEGERS, 2008, 46 : 175 - 178
  • [34] EXISTENCE OF RANK OF APPARITION OF M IN LUCAS SEQUENCE
    DESMOND, JE
    FIBONACCI QUARTERLY, 1978, 16 (01): : 7 - 10
  • [35] THE MOSTAR AND WIENER INDEX OF ALTERNATE LUCAS CUBES
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (01) : 37 - 46
  • [36] Feature-Based Lucas-Kanade and Active Appearance Models
    Antonakos, Epameinondas
    Alabort-i-Medina, Joan
    Tzimiropoulos, Georgios
    Zafeiriou, Stefanos P.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (09) : 2617 - 2632
  • [37] Application of Fibonacci Sequence and Lucas Sequence on the Design of the Toilet Siphon Pipe Shape
    Ge, Xiaole
    Wang, Hongfeng
    Liu, Shengrong
    Li, Zhanfu
    Tong, Xin
    Pu, Jiafei
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2019, 51 (04): : 463 - 478
  • [38] On numbers n dividing the nth term of a Lucas sequence
    Sanna, Carlo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (03) : 725 - 734
  • [39] A New Family of Arithmetic Sequence Associated with the Lucas Numbers
    Aktas, Hasan Muhammed
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [40] MULTISECTION OF THE FIBONACCI CONVOLUTION ARRAY AND GENERALIZED LUCAS SEQUENCE
    HOGGATT, VE
    BICKNELLJOHNSON, M
    FIBONACCI QUARTERLY, 1980, 18 (01): : 51 - 58