Points of uniform convergence and quasicontinuity

被引:0
|
作者
Ján Borsík
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] University of Prešov,Department of Physics, Mathematics and Techniques
来源
关键词
Quasicontinuity; Equi-quasicontinuity; Uniform convergence; Baire spaces; 54C08; 54C30; 26A15;
D O I
暂无
中图分类号
学科分类号
摘要
Sets of points of uniform convergence for sequences of quasicontinuous functions and for convergent sequences of functions are characterized. It is proved that a subset of a metric space is the set of points of uniform convergence for some convergent sequence of functions if and only if it is a Gδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\delta }$$\end{document}-set containing all isolated points. On the other hand, an arbitrary Gδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\delta }$$\end{document}-set is equal to the set of points of uniform convergence of some sequence of quasicontinuous functions. In conclusion, a new characterization of Baire spaces in the class of all metric spaces is given.
引用
收藏
页码:174 / 185
页数:11
相关论文
共 50 条
  • [31] An elaborate uniform convergence
    Yang, JS
    Zhou, SL
    Lossers, OP
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (04): : 398 - 399
  • [32] Uniform convergence of autocovariances
    Kavalieris, Laimonis
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (06) : 830 - 838
  • [33] UNIFORM CONVERGENCE STRUCTURES
    COOK, CH
    FISCHER, HR
    MATHEMATISCHE ANNALEN, 1967, 173 (04) : 290 - &
  • [34] UNIFORM CONVERGENCE AND REARRANGEMENT
    HARRIS, DJ
    THORP, BLD
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (07): : 801 - &
  • [35] SETS OF UNIFORM CONVERGENCE
    PEDEMONTE, L
    COLLOQUIUM MATHEMATICUM, 1975, 33 (01) : 123 - 132
  • [36] CONVERGENCE WITHOUT POINTS
    Goubault-Larrecq, Jean
    Mynard, Frederic
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 227 - 282
  • [37] On the convergence of critical points of the
    Babadjian, Jean-Francois
    Millot, Vincent
    Rodiac, Remy
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (06): : 1367 - 1417
  • [38] Points of Contention and Convergence
    Chard, Kathleen M.
    Paris, Joel
    Silk, Kenneth R.
    Wagner, Amy W.
    Widiger, Thomas A.
    Young, Jeffrey E.
    JOURNAL OF PSYCHOTHERAPY INTEGRATION, 2005, 15 (01) : 127 - 139
  • [39] A uniform convergence for non-uniform spaces
    Kupka, I
    Toma, V
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1995, 47 (3-4): : 299 - 309
  • [40] LP CONVERGENCE OF MONOTONE FUNCTIONS AND THEIR UNIFORM CONVERGENCE
    LEWIS, JT
    SHISHA, O
    JOURNAL OF APPROXIMATION THEORY, 1975, 14 (04) : 281 - 284