On the convergence of critical points of the

被引:0
|
作者
Babadjian, Jean-Francois [1 ]
Millot, Vincent [2 ]
Rodiac, Remy [1 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, UPEM,CNRS, F-94010 Creteil, France
关键词
Keywords. Ambrosio-Tortorelli energy; Mumford-Shah energy; fracture; critical points; inner variations; QUASI-HARMONIC SPHERES; MUMFORD-SHAH; MIN-MAX; PHASE; APPROXIMATION; QUANTIZATION; EXISTENCE; BEHAVIOR;
D O I
10.4171/AIHPC/102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to study the asymptotic behavior of critical points {(u(epsilon),v(epsilon))}epsilon>0 of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual Gamma-convergence theory ensures that (u(epsilon),v(epsilon)) converges in the L-2-sense to some (u & lowast;,1) as epsilon -> 0, where u & lowast; is a special function of bounded variation. Assuming further the Ambrosio-Tortorelli energy of (u epsilon,v epsilon) to converge to the Mumford-Shah energy of u & lowast;, the later is shown to be a critical point with respect to inner variations of the Mumford-Shah functional. As a byproduct, the second inner variation is also shown to pass to the limit. To establish these convergence results, interior (C infinity) regularity and boundary regularity for Dirichlet boundary conditions are first obtained for a fixed parameter epsilon>0. The asymptotic analysis is then performed by means of varifold theory in the spirit of scalar phase transition problems.
引用
收藏
页码:1367 / 1417
页数:51
相关论文
共 50 条
  • [1] Convergence to the critical attractor at infinite and tangent bifurcation points
    Tonelli, R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08): : 2369 - 2375
  • [2] Critical points via Γ-convergence: general theory and applications
    Jerrard, Robert L.
    Sternberg, Peter
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (04) : 705 - 753
  • [3] ON THE CONVERGENCE OF PROJECTED GRADIENT PROCESSES TO SINGULAR CRITICAL-POINTS
    DUNN, JC
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 55 (02) : 203 - 216
  • [4] Points of convergence: Deploying the geographies of critical nexus-thinking
    Walker, Catherine
    Coles, Benjamin
    ENVIRONMENT AND PLANNING E-NATURE AND SPACE, 2022, 5 (03) : 1618 - 1638
  • [5] Convergence of minimax structures and continuation of critical points for singularly perturbed systems
    Noris, Benedetta
    Tavares, Hugo
    Terracini, Susanna
    Verzini, Gianmaria
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (04) : 1245 - 1273
  • [6] Convergence results of local minimax method for finding multiple critical points
    Li, YX
    Zhou, JX
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03): : 865 - 885
  • [7] Vibrational ADAPT-VQE: Critical points lead to problematic convergence
    Majland, Marco
    Ettenhuber, Patrick
    Zinner, Nikolaj Thomas
    Christiansen, Ove
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (15):
  • [8] Convergence results of a local minimax method for finding multiple critical points
    Li, Yongxin
    Zhou, Jianxin
    SIAM Journal on Scientific Computing, 2003, 24 (03): : 865 - 885
  • [9] Unusual corrections to scaling and convergence of universal Renyi properties at quantum critical points
    Sahoo, Sharmistha
    Stoudenmire, E. Miles
    Stephan, Jean-Marie
    Devakul, Trithep
    Singh, Rajiv R. P.
    Melko, Roger G.
    PHYSICAL REVIEW B, 2016, 93 (08)
  • [10] CONVERGENCE WITHOUT POINTS
    Goubault-Larrecq, Jean
    Mynard, Frederic
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 227 - 282