On the convergence of critical points of the

被引:0
|
作者
Babadjian, Jean-Francois [1 ]
Millot, Vincent [2 ]
Rodiac, Remy [1 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, UPEM,CNRS, F-94010 Creteil, France
关键词
Keywords. Ambrosio-Tortorelli energy; Mumford-Shah energy; fracture; critical points; inner variations; QUASI-HARMONIC SPHERES; MUMFORD-SHAH; MIN-MAX; PHASE; APPROXIMATION; QUANTIZATION; EXISTENCE; BEHAVIOR;
D O I
10.4171/AIHPC/102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to study the asymptotic behavior of critical points {(u(epsilon),v(epsilon))}epsilon>0 of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual Gamma-convergence theory ensures that (u(epsilon),v(epsilon)) converges in the L-2-sense to some (u & lowast;,1) as epsilon -> 0, where u & lowast; is a special function of bounded variation. Assuming further the Ambrosio-Tortorelli energy of (u epsilon,v epsilon) to converge to the Mumford-Shah energy of u & lowast;, the later is shown to be a critical point with respect to inner variations of the Mumford-Shah functional. As a byproduct, the second inner variation is also shown to pass to the limit. To establish these convergence results, interior (C infinity) regularity and boundary regularity for Dirichlet boundary conditions are first obtained for a fixed parameter epsilon>0. The asymptotic analysis is then performed by means of varifold theory in the spirit of scalar phase transition problems.
引用
收藏
页码:1367 / 1417
页数:51
相关论文
共 50 条
  • [41] THOUGHT EXPERIMENT AND CARTOGRAPHY: POINTS OF CONVERGENCE
    Gavrilenko, Stanislav M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-FILOSOFIYA-SOTSIOLOGIYA-POLITOLOGIYA-TOMSK STATE UNIVERSITY JOURNAL OF PHILOSOPHY SOCIOLOGY AND POLITICAL SCIENCE, 2021, 62 : 265 - 269
  • [42] Blockchain and civil proceedings: points of convergence
    Davydova, Iryna
    Nahnybida, Volodymyr
    Adamova, Olena
    Zhurylo, Serhii
    Tokareva, Vira
    DIXI, 2023, 25 (01): : 1 - 20
  • [43] Existence and convergence of best proximity points
    Eldred, A. Anthony
    Veeramani, P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 1001 - 1006
  • [44] CONCERNING CONVERGENCE OF ITERATES TO FIXED POINTS
    KITCHEN, JW
    STUDIA MATHEMATICA, 1966, 27 (03) : 247 - &
  • [45] Convergence and fixed points by fuzzy orders
    Coppola, Cristina
    Gerla, Giangiacomo
    Pacelli, Tiziana
    FUZZY SETS AND SYSTEMS, 2008, 159 (10) : 1178 - 1190
  • [46] Extremal points, critical points, and saddle points of analytic functions
    Bak, Joseph
    Ding, Pisheng
    Newman, Donald
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (06): : 540 - 546
  • [47] Improvement Sets and Convergence of Optimal Points
    Pirro Oppezzi
    Anna Rossi
    Journal of Optimization Theory and Applications, 2015, 165 : 405 - 419
  • [48] Action, culture and development: Points of convergence
    Brandtstadter, J
    CULTURE & PSYCHOLOGY, 1997, 3 (03) : 335 - 352
  • [49] Burnout and depression: Points of convergence and divergence
    Tavella, Gabriela
    Hadzi-Pavlovic, Dusan
    Bayes, Adam
    Jebejian, Artin
    Manicavasagar, Vijaya
    Walker, Peter
    Parker, Gordon
    JOURNAL OF AFFECTIVE DISORDERS, 2023, 339 : 561 - 570
  • [50] RONSARD AND MAIAKOVSKI - POSSIBLE POINTS OF CONVERGENCE
    BACKES, JL
    RLC-REVUE DE LITTERATURE COMPAREE, 1977, 51 (02): : 257 - 263