On the convergence of critical points of the

被引:0
|
作者
Babadjian, Jean-Francois [1 ]
Millot, Vincent [2 ]
Rodiac, Remy [1 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, UPEM,CNRS, F-94010 Creteil, France
关键词
Keywords. Ambrosio-Tortorelli energy; Mumford-Shah energy; fracture; critical points; inner variations; QUASI-HARMONIC SPHERES; MUMFORD-SHAH; MIN-MAX; PHASE; APPROXIMATION; QUANTIZATION; EXISTENCE; BEHAVIOR;
D O I
10.4171/AIHPC/102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to study the asymptotic behavior of critical points {(u(epsilon),v(epsilon))}epsilon>0 of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual Gamma-convergence theory ensures that (u(epsilon),v(epsilon)) converges in the L-2-sense to some (u & lowast;,1) as epsilon -> 0, where u & lowast; is a special function of bounded variation. Assuming further the Ambrosio-Tortorelli energy of (u epsilon,v epsilon) to converge to the Mumford-Shah energy of u & lowast;, the later is shown to be a critical point with respect to inner variations of the Mumford-Shah functional. As a byproduct, the second inner variation is also shown to pass to the limit. To establish these convergence results, interior (C infinity) regularity and boundary regularity for Dirichlet boundary conditions are first obtained for a fixed parameter epsilon>0. The asymptotic analysis is then performed by means of varifold theory in the spirit of scalar phase transition problems.
引用
收藏
页码:1367 / 1417
页数:51
相关论文
共 50 条
  • [11] Points of Contention and Convergence
    Chard, Kathleen M.
    Paris, Joel
    Silk, Kenneth R.
    Wagner, Amy W.
    Widiger, Thomas A.
    Young, Jeffrey E.
    JOURNAL OF PSYCHOTHERAPY INTEGRATION, 2005, 15 (01) : 127 - 139
  • [12] On points of convergence lattices and sobriety for convergence spaces
    Mynard, Frederic
    TOPOLOGY AND ITS APPLICATIONS, 2022, 319
  • [13] Unified convergence results on a minimax algorithm for finding multiple critical points in Banach spaces
    Yao, Xudong
    Zhou, Jianxin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1330 - 1347
  • [14] Norming points and critical points
    Cho, Dong Hoon
    Choi, Yun Sung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1284 - 1290
  • [15] Why Bond Critical Points Are Not "Bond" Critical Points
    Shahbazian, Shant
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (21) : 5401 - +
  • [16] ON CRITICAL POINTS
    VANDERLEEDEN, P
    PHYSICA, 1955, 21 (09): : 743 - 744
  • [17] Critical points
    Hoeft, GG
    ADVANCED MATERIALS & PROCESSES, 1995, 148 (03): : C42 - C42
  • [18] Critical points
    不详
    ADVANCED MATERIALS & PROCESSES, 1996, 149 (06): : C64 - C64
  • [19] Critical points
    Hoeft, GG
    ADVANCED MATERIALS & PROCESSES, 1996, 149 (02): : 51 - 51
  • [20] CRITICAL POINTS
    Manley, Chris
    SIGHT AND SOUND, 2014, 24 (05): : 111 - 111