Lie comodules and the constructions of Lie bialgebras

被引:0
|
作者
LiangYun Zhang
机构
[1] Nanjing Agricultural University,College of Science
来源
关键词
Lie coalgebras; Lie comodules; Lie bialgebras; triangular Lie bialgebras; 16W30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first give a direct sum decomposition of Lie comodules, and then according to the Lie comodule theory, construct some (triangular) Lie bialgebras through Lie coalgebras.
引用
收藏
页码:1017 / 1026
页数:9
相关论文
共 50 条
  • [31] On Quantization Functors of Lie Bialgebras
    B. Enriquez
    Acta Applicandae Mathematica, 2002, 73 : 133 - 140
  • [32] Quantization of Lie bialgebras revisited
    Pavol Ševera
    Selecta Mathematica, 2016, 22 : 1563 - 1581
  • [33] On Quantizable Odd Lie Bialgebras
    Anton Khoroshkin
    Sergei Merkulov
    Thomas Willwacher
    Letters in Mathematical Physics, 2016, 106 : 1199 - 1215
  • [34] n-Lie bialgebras
    Bai, Ruipu
    Guo, Weiwei
    Lin, Lixin
    Zhang, Yan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 382 - 397
  • [35] Hamiltonian type lie bialgebras
    Xin, Bin
    Song, Guang-ai
    Su, Yu-cai
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1267 - 1279
  • [36] Lie 2-Bialgebras
    Chengming Bai
    Yunhe Sheng
    Chenchang Zhu
    Communications in Mathematical Physics, 2013, 320 : 149 - 172
  • [37] On Quantizable Odd Lie Bialgebras
    Khoroshkin, Anton
    Merkulov, Sergei
    Willwacher, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (09) : 1199 - 1215
  • [38] Quantization of Lie bialgebras revisited
    Severa, Pavol
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1563 - 1581
  • [39] On simple real Lie bialgebras
    Andruskiewitsch, N
    Jancsa, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (03) : 139 - 158
  • [40] On the associative analog of Lie bialgebras
    Aguiar, M
    JOURNAL OF ALGEBRA, 2001, 244 (02) : 492 - 532