Strict Inequality;
Main Lemma;
Convex Shape;
Dyadic Cube;
Doklady Akademii Nauk SSSR;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we prove finiteness principles for Cm(Rn,RD)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C^m{({\mathbb{R}^n},{\mathbb{R}^D)}}}$$\end{document} and Cm-1,1(Rn,RD)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C^{m-1,1}(\mathbb{R}^n,\mathbb{R}^D)}$$\end{document} selections. In particular, we provide a proof for a conjecture of Brudnyi-Shvartsman (1994) on Lipschitz selections for the case when the domain is X=Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${X=\mathbb{R}^n}$$\end{document}.
机构:
MIT, Dept Math, Cambridge, MA 02139 USA
Univ Nova Lisboa, FCT, Dept Matemat, Lisbon, Portugal
Univ Nova Lisboa, FCT, CMA, Lisbon, PortugalMIT, Dept Math, Cambridge, MA 02139 USA