Finiteness Principles for Smooth Selection

被引:0
|
作者
Charles Fefferman
Arie Israel
Garving K. Luli
机构
[1] Princeton University,Department of Mathematics
[2] The University of Texas at Austin,Department of Mathematics
[3] University of California,Department of Mathematics
[4] Davis,undefined
来源
关键词
Strict Inequality; Main Lemma; Convex Shape; Dyadic Cube; Doklady Akademii Nauk SSSR;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove finiteness principles for Cm(Rn,RD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^m{({\mathbb{R}^n},{\mathbb{R}^D)}}}$$\end{document} and Cm-1,1(Rn,RD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{m-1,1}(\mathbb{R}^n,\mathbb{R}^D)}$$\end{document} selections. In particular, we provide a proof for a conjecture of Brudnyi-Shvartsman (1994) on Lipschitz selections for the case when the domain is X=Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X=\mathbb{R}^n}$$\end{document}.
引用
收藏
页码:422 / 477
页数:55
相关论文
共 50 条