Finiteness Principles for Smooth Selection

被引:0
|
作者
Charles Fefferman
Arie Israel
Garving K. Luli
机构
[1] Princeton University,Department of Mathematics
[2] The University of Texas at Austin,Department of Mathematics
[3] University of California,Department of Mathematics
[4] Davis,undefined
来源
关键词
Strict Inequality; Main Lemma; Convex Shape; Dyadic Cube; Doklady Akademii Nauk SSSR;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove finiteness principles for Cm(Rn,RD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^m{({\mathbb{R}^n},{\mathbb{R}^D)}}}$$\end{document} and Cm-1,1(Rn,RD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{m-1,1}(\mathbb{R}^n,\mathbb{R}^D)}$$\end{document} selections. In particular, we provide a proof for a conjecture of Brudnyi-Shvartsman (1994) on Lipschitz selections for the case when the domain is X=Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X=\mathbb{R}^n}$$\end{document}.
引用
收藏
页码:422 / 477
页数:55
相关论文
共 50 条
  • [21] Partially smooth variational principles and applications
    Borwein, JM
    Treiman, JS
    Zhu, QJJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (08) : 1031 - 1059
  • [22] On smooth variational principles in banach spaces
    Fabian, M
    Hajek, P
    Vanderwerff, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (01) : 153 - 172
  • [23] Principles of the turbulent current in smooth pipes
    不详
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1933, 77 : 1076 - 1077
  • [24] Smooth selection for infinite sets
    Jiang, Fushuai
    Luli, Carving K.
    O'Neill, Kevin
    ADVANCES IN MATHEMATICS, 2022, 407
  • [25] Smooth variational principles and non-smooth analysis in Banach spaces
    Deville, R
    NONLINEAR ANALYSIS, DIFFERENTIAL EQUATIONS AND CONTROL, 1999, 528 : 369 - 405
  • [26] SELECTION PRINCIPLES AND BAIRE SPACES
    Scheepers, Marion
    MATEMATICKI VESNIK, 2009, 61 (03): : 195 - 202
  • [27] Projective versions of selection principles
    Bonanzinga, Maddalena
    Cammaroto, Filippo
    Matveev, Mikhail
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (05) : 874 - 893
  • [28] Selection principles and bitopological hyperspaces
    Osipov, Alexander V.
    APPLIED GENERAL TOPOLOGY, 2023, 24 (01): : 1 - 8
  • [29] Basic principles of genomic selection
    Robert-Granie, C.
    Legarra, A.
    Ducrocq, V.
    INRA PRODUCTIONS ANIMALES, 2011, 24 (04): : 331 - 340
  • [30] Selection Principles and Sierpinski Sets
    Marion Scheepers
    Acta Mathematica Sinica, English Series, 2007, 23 : 1153 - 1162