Finiteness principles for smooth convex functions

被引:0
|
作者
Drake, Marjorie K.
机构
基金
美国国家科学基金会;
关键词
Smooth convex extension; Whitney's extension theorem; Finiteness principle; Convex; Extension; Interpolation;
D O I
10.1016/j.aim.2024.109652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E subset of R-n be a compact set, and f:E -> R. How can we tell if there exists a convex extension F is an element of C-1,C-1(R-n) of f, i.e. satisfying F|(E)=f|(E)? Assuming such an extension exists, how small can one take the Lipschitz constant Lip(del F):=sup(x,y is an element of R)n,(|del F(x)-del F(y)|)(x not equal y)/(|x-y|)? We provide an answer to these questions for the class of strongly convex functions by proving that there exist constants k(#)is an element of N and C>0 depending only on the dimension n, such that if for every subset S subset of E, #S <= k(#), there exists an( eta)-strongly convex function F-S is an element of C-1,C-1(R-n) satisfying F-S|S=f|(S) and Lip(del F-S)<= M, then there exists an (eta)/(C)-strongly convex function F is an element of C-c(1,1)(R-n) satisfying F|(E)=f|(E), and Lip(del F)<= CM2/eta. Further, we prove a Finiteness Principle for the space of convex functions in C-1,C-1(R) and that the sharp finiteness constant for this space is k(#)=5.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Finiteness Principles for Smooth Selection
    Charles Fefferman
    Arie Israel
    Garving K. Luli
    Geometric and Functional Analysis, 2016, 26 : 422 - 477
  • [2] Finiteness Principles for Smooth Selection
    Fefferman, Charles
    Israel, Arie
    Luli, Garving K.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (02) : 422 - 477
  • [3] Smooth convex extensions of convex functions
    Azagra, Daniel
    Mudarra, Carlos
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
  • [4] Smooth convex extensions of convex functions
    Daniel Azagra
    Carlos Mudarra
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [5] SMOOTH VALUATIONS ON CONVEX FUNCTIONS
    Knoerr, Jonas
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (02) : 801 - 835
  • [6] MOST CONVEX-FUNCTIONS ARE SMOOTH
    HOWE, R
    JOURNAL OF MATHEMATICAL ECONOMICS, 1982, 9 (1-2) : 37 - 39
  • [8] Adaptive Regret of Convex and Smooth Functions
    Zhang, Lijun
    Liu, Tie-Yan
    Zhou, Zhi-Hua
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [9] Smooth approximations of nonsmooth convex functions
    Polyakva, L. N.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2022, 18 (04): : 535 - 547
  • [10] Smooth convex bodies with proportional projection functions
    Ralph Howard
    Daniel Hug
    Israel Journal of Mathematics, 2007, 159 : 317 - 341