Finiteness principles for smooth convex functions

被引:0
|
作者
Drake, Marjorie K.
机构
基金
美国国家科学基金会;
关键词
Smooth convex extension; Whitney's extension theorem; Finiteness principle; Convex; Extension; Interpolation;
D O I
10.1016/j.aim.2024.109652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E subset of R-n be a compact set, and f:E -> R. How can we tell if there exists a convex extension F is an element of C-1,C-1(R-n) of f, i.e. satisfying F|(E)=f|(E)? Assuming such an extension exists, how small can one take the Lipschitz constant Lip(del F):=sup(x,y is an element of R)n,(|del F(x)-del F(y)|)(x not equal y)/(|x-y|)? We provide an answer to these questions for the class of strongly convex functions by proving that there exist constants k(#)is an element of N and C>0 depending only on the dimension n, such that if for every subset S subset of E, #S <= k(#), there exists an( eta)-strongly convex function F-S is an element of C-1,C-1(R-n) satisfying F-S|S=f|(S) and Lip(del F-S)<= M, then there exists an (eta)/(C)-strongly convex function F is an element of C-c(1,1)(R-n) satisfying F|(E)=f|(E), and Lip(del F)<= CM2/eta. Further, we prove a Finiteness Principle for the space of convex functions in C-1,C-1(R) and that the sharp finiteness constant for this space is k(#)=5.
引用
收藏
页数:28
相关论文
共 50 条
  • [22] Differentiability of convex functions on sublinear topological spaces and variational principles in locally convex spaces
    Cheng, LX
    Teng, YM
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (04) : 611 - 632
  • [23] DIFFERENTIABILITY OF CONVEX FUNCTIONS ON SUBLINEAR TOPOLOGICAL SPACES AND VARIATIONAL PRINCIPLES IN LOCALLY CONVEX SPACES
    CHENG LIXIN TENG YANMEI Department of Mathematic
    Chinese Annals of Mathematics, 2005, (04) : 124 - 145
  • [24] FINITENESS OF WAVE FUNCTIONS
    MORROW, RA
    NUOVO CIMENTO A, 1968, 55 (04): : 827 - +
  • [25] LEARNING SMOOTH MODELS OF NONSMOOTH FUNCTIONS VIA CONVEX OPTIMIZATION
    Lauer, F.
    Le, V. L.
    Bloch, G.
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [26] Accelerated Distributed Nesterov Gradient Descent for Convex and Smooth Functions
    Qu, Guannan
    Li, Na
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [27] Minimizing Compositions of Differences-of-Convex Functions with Smooth Mappings
    Le Thi, Hoai An
    Huynh, Van Ngai
    Dinh, Tao Pham
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1140 - 1168
  • [28] Some Properties of Smooth Convex Functions and Newton's Method
    Denisov, D. V.
    Evtushenko, Yu. G.
    Tret'yakov, A. A.
    DOKLADY MATHEMATICS, 2021, 103 (02) : 76 - 80
  • [29] ROBUST ACCELERATED GRADIENT METHODS FOR SMOOTH STRONGLY CONVEX FUNCTIONS
    Aybat, Necdet Serhat
    Fallah, Alireza
    Gurbuzbalaban, Mert
    Ozdaglar, Asuman
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 717 - 751
  • [30] Some Properties of Smooth Convex Functions and Newton’s Method
    D. V. Denisov
    Yu. G. Evtushenko
    A. A. Tret’yakov
    Doklady Mathematics, 2021, 103 : 76 - 80