Weighted Non-Trivial Multiply Intersecting Families

被引:0
|
作者
Peter Frankl
Norihide Tokushige
机构
[1] ER 175 Combinatoire,CNRS
[2] Ryukyu University,College of Education
来源
Combinatorica | 2006年 / 26卷
关键词
05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Let n and r be positive integers. Suppose that a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{F}}} \subset 2^{{{\left[ n \right]}}} $$\end{document} satisfies F1∩···∩Fr ≠∅ for all F1, . . .,Fr ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{F}}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bigcap {_{{F \in {\user1{\mathcal{F}}}}} } }F = \emptyset $$\end{document}. We prove that there exists ε=ε(r) >0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum {_{{F \in {\user1{\mathcal{F}}}}} } }\omega ^{{{\left| F \right|}}} {\left( {1 - \omega } \right)}^{{n - {\left| F \right|}}} \leqslant \omega ^{r} {\left( {r + 1 - r\omega } \right)} $$\end{document} holds for 1/2≤w≤1/2+ε if r≥13.
引用
收藏
页码:37 / 46
页数:9
相关论文
共 50 条
  • [41] Random walks and multiply intersecting families
    Frankl, P
    Tokushige, N
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (01) : 121 - 134
  • [42] ENTANGLEMENT AND NON-TRIVIAL TOPOLOGIES
    Prudencio, Thiago
    Cirilo-Lombardo, Diego Julio
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (09)
  • [43] The Non-Trivial Accomplishments of Counterterrorists
    Jordan, Jenna
    SECURITY STUDIES, 2024,
  • [44] Fermions on non-trivial topologies
    Gamboa, J
    PHYSICS LETTERS B, 2000, 477 (04) : 469 - 473
  • [45] NON-TRIVIAL LAWS FOR HOMOTOPY
    TAYLOR, W
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A5 - A6
  • [46] THE MAXIMUM SIZE OF A NON-TRIVIAL INTERSECTING UNIFORM FAMILY THAT IS NOT A SUBFAMILY OF THE HILTON-MILNER FAMILY
    Han, Jie
    Kohayakawa, Yoshiharu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 73 - 87
  • [47] NON-TRIVIAL REVERSAL OF THE TORUS
    PETIT, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (14): : 927 - 930
  • [48] The non-trivial functions of sleep
    Rattenborg, Niels C.
    Lesku, John A.
    Martinez-Gonzalez, Dolores
    Lima, Steven L.
    SLEEP MEDICINE REVIEWS, 2007, 11 (05) : 405 - 409
  • [49] Non-trivial pursuit of physiology
    Zakaryan, V
    Bliss, R
    Sarvazyan, N
    ADVANCES IN PHYSIOLOGY EDUCATION, 2005, 29 (01) : 11 - 14
  • [50] NON-TRIVIAL MEDIA FACADES
    Herr, Christiane M.
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED ARCHITECTURAL DESIGN RESEARCH IN ASIA (CAADRIA 2012): BEYOND CODES AND PIXELS, 2012, : 99 - 108