Weighted Non-Trivial Multiply Intersecting Families

被引:0
|
作者
Peter Frankl
Norihide Tokushige
机构
[1] ER 175 Combinatoire,CNRS
[2] Ryukyu University,College of Education
来源
Combinatorica | 2006年 / 26卷
关键词
05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Let n and r be positive integers. Suppose that a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{F}}} \subset 2^{{{\left[ n \right]}}} $$\end{document} satisfies F1∩···∩Fr ≠∅ for all F1, . . .,Fr ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{F}}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bigcap {_{{F \in {\user1{\mathcal{F}}}}} } }F = \emptyset $$\end{document}. We prove that there exists ε=ε(r) >0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum {_{{F \in {\user1{\mathcal{F}}}}} } }\omega ^{{{\left| F \right|}}} {\left( {1 - \omega } \right)}^{{n - {\left| F \right|}}} \leqslant \omega ^{r} {\left( {r + 1 - r\omega } \right)} $$\end{document} holds for 1/2≤w≤1/2+ε if r≥13.
引用
收藏
页码:37 / 46
页数:9
相关论文
共 50 条
  • [31] NON-TRIVIAL PURSUITS
    CANBY, ET
    AUDIO, 1985, 69 (03): : 20 - &
  • [32] Intersecting families of sets are typically trivial
    Balogh, Jozsef
    Garcia, Ramon I.
    Li, Lina
    Wagner, Adam Zsolt
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 164 : 44 - 67
  • [33] Identifying families of multipartite states with non-trivial local entanglement transformations
    Li, Nicky Kai Hong
    Spee, Cornelia
    Hebenstreit, Martin
    Vicente, Julio I. de
    Kraus, Barbara
    QUANTUM, 2024, 8 : 1 - 23
  • [34] Families of Mordell Curves with Non-trivial Torsion and Rank of at Least Three
    Jimwel, Renz S.
    Bacani, Jerico B.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 155 - 162
  • [35] Trivial stable structures with non-trivial reducts
    Evans, DM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 351 - 363
  • [36] Trivial and non-trivial machines in the animal and in man
    Ivanovas, G
    KYBERNETES, 2005, 34 (3-4) : 508 - 520
  • [37] Trivial and Non-Trivial (yet Difficult) Physicalism
    Paoletti, Michele Paolini
    PHILOSOPHICAL INQUIRIES, 2015, 3 (01): : 29 - 37
  • [39] ON NON-TRIVIAL SPECTRA OF TRIVIAL GAUGE THEORIES
    Korcyl, Piotr
    Koren, Mateusz
    Wosiek, Jacek
    ACTA PHYSICA POLONICA B, 2013, 44 (04): : 713 - 720
  • [40] Multiply-intersecting families revisited
    Tokushige, Norihide
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 929 - 948