Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices

被引:0
|
作者
Huiqin Li
Zhi Dong Bai
Jiang Hu
机构
[1] Northeast Normal University,KLASMOE and School of Mathematics and Statistics
关键词
Empirical spectral distribution; LSD; Quaternion matrices; Sample covariance matrix;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the limit of empirical spectral distributions of quaternion sample covariance matrices. Motivated by Bai and Silverstein (Spectral analysis of large dimensional random matrices, Springer, New York, 2010) and Marčenko and Pastur (Matematicheskii Sb, 114:507–536, 1967), we can extend the results of the real or complex sample covariance matrix to the quaternion case. Suppose Xn=(xjk(n))p×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf X_n = ({x_{jk}^{(n)}})_{p\times n}$$\end{document} is a quaternion random matrix. For each n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, the entries {xij(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_{ij}^{(n)}\}$$\end{document} are independent random quaternion variables with a common mean μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and variance σ2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^2>0$$\end{document}. It is shown that the empirical spectral distribution of the quaternion sample covariance matrix Sn=n-1XnXn∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf S_n=n^{-1}\mathbf X_n\mathbf X_n^*$$\end{document} converges to the Marčenko–Pastur law as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}, n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} and p/n→y∈(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p/n\rightarrow y\in (0,+\infty )$$\end{document}.
引用
收藏
页码:765 / 785
页数:20
相关论文
共 50 条
  • [21] The limiting spectral distribution function of large dimensional random matrices of sample covariance type
    Sang -Il Choi
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (2): : 423 - 432
  • [22] CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data
    Zou, Tingting
    Zheng, Shurong
    Bai, Zhidong
    Yao, Jianfeng
    Zhu, Hongtu
    STATISTICAL PAPERS, 2022, 63 (02) : 605 - 664
  • [23] CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data
    Tingting Zou
    Shurong Zheng
    Zhidong Bai
    Jianfeng Yao
    Hongtu Zhu
    Statistical Papers, 2022, 63 : 605 - 664
  • [24] No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices
    Bai, ZD
    Silverstein, JW
    ANNALS OF PROBABILITY, 1998, 26 (01): : 316 - 345
  • [25] Central limit theorem for linear spectral statistics of large dimensional separable sample covariance matrices
    Bai, Zhidong
    Li, Huiqin
    Pan, Guangming
    BERNOULLI, 2019, 25 (03) : 1838 - 1869
  • [26] No eigenvalues outside the support of the limiting spectral distribution of large dimensional noncentral sample covariance matrices
    Bai, Zhidong
    Hu, Jiang
    Silverstein, Jack w.
    Zhou, Huanchao
    BERNOULLI, 2025, 31 (01) : 671 - 691
  • [27] Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix
    Pan, Guangming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (06) : 1330 - 1338
  • [28] On spectral distribution of sample covariance matrices from large dimensional and large k-fold tensor products
    Collins, Benoit
    Yao, Jianfeng
    Yuan, Wangjun
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [29] Exact separation of eigenvalues of large dimensional sample covariance matrices
    Bai, ZD
    Silverstein, JW
    ANNALS OF PROBABILITY, 1999, 27 (03): : 1536 - 1555
  • [30] A note on the convergence rate of the spectral distributions of large random matrices
    Bai, ZD
    Miao, BQ
    Tsay, JS
    STATISTICS & PROBABILITY LETTERS, 1997, 34 (01) : 95 - 101