CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data

被引:0
|
作者
Tingting Zou
Shurong Zheng
Zhidong Bai
Jianfeng Yao
Hongtu Zhu
机构
[1] Northeast Normal University,KLAS and School of Mathematics and Statistics
[2] The University of Hong Kong,Department of Statistics and Actuarial Science
[3] University of North Carolina at Chapel Hill,undefined
来源
Statistical Papers | 2022年 / 63卷
关键词
Sample covariance matrices; Linear spectral statistics; Central limit theorem; Repeated linear processes; High-dimensional dependent data; 15B52; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the central limit theorem for linear spectral statistics of high dimensional sample covariance matrices of the form Bn=n-1∑j=1nQxjxj∗Q∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {B}}_n=n^{-1}\sum _{j=1}^{n}{\mathbf {Q}}{\mathbf {x}}_j{\mathbf {x}}_j^{*}{\mathbf {Q}}^{*}$$\end{document} under the assumption that p/n→y>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p/n\rightarrow y>0$$\end{document}, where Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {Q}}$$\end{document} is a p×k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\times k$$\end{document} nonrandom matrix and {xj}j=1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {x}}_j\}_{j=1}^n$$\end{document} is a sequence of independent k-dimensional random vector with independent entries. A key novelty here is that the dimension k≥p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge p$$\end{document} can be arbitrary, possibly infinity. This new model of sample covariance matrix Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {B}}_n$$\end{document} covers most of the known models as its special cases. For example, standard sample covariance matrices are obtained with k=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=p$$\end{document} and Q=Tn1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {Q}}={\mathbf {T}}_n^{1/2}$$\end{document} for some positive definite Hermitian matrix Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {T}}_n$$\end{document}. Also with k=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\infty $$\end{document} our model covers the case of repeated linear processes considered in recent high-dimensional time series literature. The CLT found in this paper substantially generalizes the seminal CLT in Bai and Silverstein (Ann Probab 32(1):553–605, 2004). Applications of this new CLT are proposed for testing the AR(1) or AR(2) structure for a causal process. Our proposed tests are then used to analyze a large fMRI data set.
引用
收藏
页码:605 / 664
页数:59
相关论文
共 50 条
  • [1] CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data
    Zou, Tingting
    Zheng, Shurong
    Bai, Zhidong
    Yao, Jianfeng
    Zhu, Hongtu
    STATISTICAL PAPERS, 2022, 63 (02) : 605 - 664
  • [2] CLT for linear spectral statistics of large-dimensional sample covariance matrices
    Bai, ZD
    Silverstein, JW
    ANNALS OF PROBABILITY, 2004, 32 (1A): : 553 - 605
  • [3] CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions
    Zhang, Yangchun
    Hu, Jiang
    Li, Weiming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 191
  • [4] Central limit theorem for linear spectral statistics of large dimensional separable sample covariance matrices
    Bai, Zhidong
    Li, Huiqin
    Pan, Guangming
    BERNOULLI, 2019, 25 (03) : 1838 - 1869
  • [5] Central limit theorem for linear spectral statistics of large dimensional quaternion sample covariance matrices
    Yin, Yanqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 554 : 275 - 315
  • [6] SUBSTITUTION PRINCIPLE FOR CLT OF LINEAR SPECTRAL STATISTICS OF HIGH-DIMENSIONAL SAMPLE COVARIANCE MATRICES WITH APPLICATIONS TO HYPOTHESIS TESTING
    Zheng, Shurong
    Bai, Zhidong
    Yao, Jianfeng
    ANNALS OF STATISTICS, 2015, 43 (02): : 546 - 591
  • [7] On the CLT for Linear Eigenvalue Statistics of a Tensor Model of Sample Covariance Matrices
    Dembczak-Kolodziejczyk, Alicja
    Lytova, Anna
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (02) : 374 - 395
  • [8] CLT for linear spectral statistics of normalized sample covariance matrices with the dimension much larger than the sample size
    Chen, Binbin
    Pan, Guangming
    BERNOULLI, 2015, 21 (02) : 1089 - 1133
  • [9] Linear spectral statistics of sequential sample covariance matrices
    Doernemann, Nina
    Dette, Holger
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 946 - 970
  • [10] Linear spectral statistics of eigenvectors of anisotropic sample covariance matrices
    Yang, Fan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2767 - 2812