CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data

被引:0
|
作者
Tingting Zou
Shurong Zheng
Zhidong Bai
Jianfeng Yao
Hongtu Zhu
机构
[1] Northeast Normal University,KLAS and School of Mathematics and Statistics
[2] The University of Hong Kong,Department of Statistics and Actuarial Science
[3] University of North Carolina at Chapel Hill,undefined
来源
Statistical Papers | 2022年 / 63卷
关键词
Sample covariance matrices; Linear spectral statistics; Central limit theorem; Repeated linear processes; High-dimensional dependent data; 15B52; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the central limit theorem for linear spectral statistics of high dimensional sample covariance matrices of the form Bn=n-1∑j=1nQxjxj∗Q∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {B}}_n=n^{-1}\sum _{j=1}^{n}{\mathbf {Q}}{\mathbf {x}}_j{\mathbf {x}}_j^{*}{\mathbf {Q}}^{*}$$\end{document} under the assumption that p/n→y>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p/n\rightarrow y>0$$\end{document}, where Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {Q}}$$\end{document} is a p×k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\times k$$\end{document} nonrandom matrix and {xj}j=1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {x}}_j\}_{j=1}^n$$\end{document} is a sequence of independent k-dimensional random vector with independent entries. A key novelty here is that the dimension k≥p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge p$$\end{document} can be arbitrary, possibly infinity. This new model of sample covariance matrix Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {B}}_n$$\end{document} covers most of the known models as its special cases. For example, standard sample covariance matrices are obtained with k=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=p$$\end{document} and Q=Tn1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {Q}}={\mathbf {T}}_n^{1/2}$$\end{document} for some positive definite Hermitian matrix Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {T}}_n$$\end{document}. Also with k=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\infty $$\end{document} our model covers the case of repeated linear processes considered in recent high-dimensional time series literature. The CLT found in this paper substantially generalizes the seminal CLT in Bai and Silverstein (Ann Probab 32(1):553–605, 2004). Applications of this new CLT are proposed for testing the AR(1) or AR(2) structure for a causal process. Our proposed tests are then used to analyze a large fMRI data set.
引用
收藏
页码:605 / 664
页数:59
相关论文
共 50 条
  • [41] Gaussian fluctuations for sample covariance matrices with dependent data
    Friesen, Olga
    Loewe, Matthias
    Stolz, Michael
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 270 - 287
  • [42] Partial Linear Eigenvalue Statistics for Wigner and Sample Covariance Random Matrices
    Sean O’Rourke
    Alexander Soshnikov
    Journal of Theoretical Probability, 2015, 28 : 726 - 744
  • [43] The limiting spectral distribution for large sample covariance matrices with unbounded m-dependent entries
    Wei, Meng
    Yang, Guangyu
    Yang, Lingling
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) : 6651 - 6662
  • [44] No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices
    Bai, ZD
    Silverstein, JW
    ANNALS OF PROBABILITY, 1998, 26 (01): : 316 - 345
  • [45] No eigenvalues outside the support of the limiting spectral distribution of large dimensional noncentral sample covariance matrices
    Bai, Zhidong
    Hu, Jiang
    Silverstein, Jack w.
    Zhou, Huanchao
    BERNOULLI, 2025, 31 (01) : 671 - 691
  • [46] EIGENVALUE DISTRIBUTION OF LARGE SAMPLE COVARIANCE MATRICES OF LINEAR PROCESSES
    Pfaffel, Oliver
    Schlemm, Eckhard
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2011, 31 (02): : 313 - 329
  • [47] CLT for eigenvalue statistics of large-dimensional general Fisher matrices with applications
    Zheng, Shurong
    Bai, Zhidong
    Yao, Jianfeng
    BERNOULLI, 2017, 23 (02) : 1130 - 1178
  • [48] On spectral distribution of sample covariance matrices from large dimensional and large k-fold tensor products
    Collins, Benoit
    Yao, Jianfeng
    Yuan, Wangjun
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [49] Exact separation of eigenvalues of large dimensional sample covariance matrices
    Bai, ZD
    Silverstein, JW
    ANNALS OF PROBABILITY, 1999, 27 (03): : 1536 - 1555
  • [50] Extreme eigenvalues of large dimensional quaternion sample covariance matrices
    Li, Huiqin
    Bai, Zhidong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 159 : 1 - 14