The torus operator in holography

被引:0
|
作者
Donald Marolf
Jason Wien
机构
[1] University of California Santa Barbara,Department of Physics
关键词
AdS-CFT Correspondence; Black Holes; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the non-local operator T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} defined in 2-dimensional CFTs by the path integral over a torus with two punctures. Using the AdS/CFT correspondence, we study the spectrum and ground state of this operator in holographic such CFTs in the limit of large central charge c. In one region of moduli space, we argue that the operator retains a finite gap and has a ground state that differs from the CFT vacuum only by order one corrections. In this region the torus operator is much like the cylinder operator. But in another region of moduli space we find a puzzle. Although our T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} is of the manifestly positive form A†A, studying the most tractable phases of Tr(T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}n) suggests that T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} has negative eigenvalues. It seems clear that additional phases must become relevant at large n, perhaps leading to novel behavior associated with a radically different ground state or a much higher density of states. By studying the action of two such torus operators on the CFT ground state, we also provide evidence that, even at large n, the relevant bulk saddles have t = 0 surfaces with small genus.
引用
收藏
相关论文
共 50 条
  • [41] Holography of Wilson-loop expectation values with local operator insertions
    Miwa, Akitsugu
    Yoneya, Tamiaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12):
  • [42] Testing holography using lattice super-Yang-Mills theory on a 2-torus
    Catterall, Simon
    Jha, Raghav G.
    Schaich, David
    Wiseman, Toby
    PHYSICAL REVIEW D, 2018, 97 (08)
  • [43] Vertex operator superalgebra/sigma model correspondences: The four-torus case
    Anagiannis, Vassilis
    Cheng, Miranda C. N.
    Duncan, John
    Volpato, Roberto
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (08):
  • [44] Normal forms near an invariant torus and the asymptotic eigenvalues of the operator ⟨V, del⟩-εΔ
    Poteryakhin, MA
    MATHEMATICAL NOTES, 2005, 77 (1-2) : 140 - 145
  • [45] Gauge equivalence and the inverse spectral problem for the magnetic Schrödinger operator on the torus
    G. Eskin
    J. Ralston
    Russian Journal of Mathematical Physics, 2013, 20 : 413 - 423
  • [46] STEIN-TOMAS THEOREM FOR A TORUS AND THE PERIODIC SCHRODINGER OPERATOR WITH SINGULAR POTENTIAL
    Kachkovskii, I.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (06) : 939 - 948
  • [47] Background geometry of DLCQ M theory on a p-torus and holography -: art. no. 026003
    Hyun, S
    Kiem, Y
    PHYSICAL REVIEW D, 1999, 59 (02):
  • [48] OPERATOR ALGEBRA AND BRAID GROUP-STRUCTURE IN CHERN-SIMONS THEORY ON A TORUS
    HO, CL
    HOSOTANI, Y
    CHINESE JOURNAL OF PHYSICS, 1994, 32 (06) : 1121 - 1132
  • [49] Approximate formulas for eigenvalues of the Laplace operator on a torus arising in linear problems with oscillating coefficients
    Bruening, J.
    Grushin, V. V.
    Dobrokhotov, S. Yu.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2012, 19 (03) : 261 - 272
  • [50] Approximate formulas for eigenvalues of the Laplace operator on a torus arising in linear problems with oscillating coefficients
    J. Brüning
    V. V. Grushin
    S. Yu. Dobrokhotov
    Russian Journal of Mathematical Physics, 2012, 19 : 261 - 272