The torus operator in holography

被引:0
|
作者
Donald Marolf
Jason Wien
机构
[1] University of California Santa Barbara,Department of Physics
关键词
AdS-CFT Correspondence; Black Holes; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the non-local operator T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} defined in 2-dimensional CFTs by the path integral over a torus with two punctures. Using the AdS/CFT correspondence, we study the spectrum and ground state of this operator in holographic such CFTs in the limit of large central charge c. In one region of moduli space, we argue that the operator retains a finite gap and has a ground state that differs from the CFT vacuum only by order one corrections. In this region the torus operator is much like the cylinder operator. But in another region of moduli space we find a puzzle. Although our T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} is of the manifestly positive form A†A, studying the most tractable phases of Tr(T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}n) suggests that T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} has negative eigenvalues. It seems clear that additional phases must become relevant at large n, perhaps leading to novel behavior associated with a radically different ground state or a much higher density of states. By studying the action of two such torus operators on the CFT ground state, we also provide evidence that, even at large n, the relevant bulk saddles have t = 0 surfaces with small genus.
引用
收藏
相关论文
共 50 条
  • [31] INTERTWINING OPERATOR REALIZATION OF ANTI-DE SITTER HOLOGRAPHY
    Aizawa, N.
    Dobrev, V. K.
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 75 (02) : 179 - 197
  • [32] Generalized dilatation operator method for non-relativistic holography
    Chemissany, Wissam
    Papadimitriou, Ioannis
    PHYSICS LETTERS B, 2014, 737 : 272 - 276
  • [33] CDF 9/7 Wavelets as Sparsifying Operator in Compressive Holography
    Yan, Hao
    Blinder, David
    Bettens, Stijn
    Ottevaere, Heidi
    Munteanu, Adrian
    Schelkens, Peter
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2015 - 2019
  • [34] WAVELENGTH VARIATION IN FOURIER OPTICS AND HOLOGRAPHY DESCRIBED BY OPERATOR ALGEBRA
    NAZARATHY, M
    SHAMIR, J
    ISRAEL JOURNAL OF TECHNOLOGY, 1980, 18 (05): : 224 - 231
  • [35] Gauge equivalence and the inverse spectral problem for the magnetic Schrodinger operator on the torus
    Eskin, G.
    Ralston, J.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (04) : 413 - 423
  • [36] Geometric Dirac operator on noncommutative torus and M2( C )
    Lira-Torres, E.
    Majid, S.
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [37] 2D Discrete Hodge-Dirac Operator on the Torus
    Sushch, Volodymyr
    SYMMETRY-BASEL, 2022, 14 (08):
  • [38] ANALYZING THE SPECTRAL (A)SYMMETRY OF THE MASSLESS DIRAC OPERATOR ON THE 3-TORUS
    Barakovic, Elvis
    Pasic, Vedad
    OPERATORS AND MATRICES, 2020, 14 (04): : 815 - 835
  • [39] Normal forms near an invariant torus and the asymptotic eigenvalues of the operator 〈V, ∇〉 − εΔ
    M. A. Poteryakhin
    Mathematical Notes, 2005, 77 : 140 - 145
  • [40] OUTER FACTORIZATION OF OPERATOR-VALUED WEIGHT-FUNCTIONS ON THE TORUS
    CHENG, R
    STUDIA MATHEMATICA, 1994, 110 (01) : 19 - 34