Runge-Kutta methods in optimal control and the transformed adjoint system

被引:0
|
作者
William W. Hager
机构
[1] Department of Mathematics,
[2] University of Florida,undefined
[3] Gainesville,undefined
[4] FL 32611,undefined
[5] USA; e-mail: hager@math.ufl.edu,undefined
[6] http://www.math.ufl.edu/~hager,undefined
来源
Numerische Mathematik | 2000年 / 87卷
关键词
Mathematics Subject Classification (1991): 49M25, 65L06;
D O I
暂无
中图分类号
学科分类号
摘要
The convergence rate is determined for Runge-Kutta discretizations of nonlinear control problems. The analysis utilizes a connection between the Kuhn-Tucker multipliers for the discrete problem and the adjoint variables associated with the continuous minimum principle. This connection can also be exploited in numerical solution techniques that require the gradient of the discrete cost function.
引用
收藏
页码:247 / 282
页数:35
相关论文
共 50 条
  • [41] Finite element and Runge-Kutta methods for boundary-value and optimal control problems
    Bottasso, CL
    Ragazzi, A
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (04) : 749 - 751
  • [42] FBSM Solution of Optimal Control Problems Using Hybrid Runge-Kutta Based Methods
    Ebadi, M.
    Haghighi, A. R.
    Maleki, I. M.
    Ebadian, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (04)
  • [43] INEXACT RESTORATION FOR RUNGE-KUTTA DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS
    Kaya, C. Yalcin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1492 - 1517
  • [44] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2014, 65 : 421 - 445
  • [45] FAMILIES OF IMBEDDED RUNGE-KUTTA METHODS
    VERNER, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (05) : 857 - 875
  • [46] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [47] Runge-Kutta methods of special form
    Ixaru, L. Gr.
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [48] Equilibrium attractivity of Runge-Kutta methods
    Schmitt, BA
    Weiner, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 327 - 348
  • [49] An introduction to ''Almost Runge-Kutta'' methods
    Butcher, JC
    APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) : 331 - 342
  • [50] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115