Runge-Kutta methods in optimal control and the transformed adjoint system

被引:0
|
作者
William W. Hager
机构
[1] Department of Mathematics,
[2] University of Florida,undefined
[3] Gainesville,undefined
[4] FL 32611,undefined
[5] USA; e-mail: hager@math.ufl.edu,undefined
[6] http://www.math.ufl.edu/~hager,undefined
来源
Numerische Mathematik | 2000年 / 87卷
关键词
Mathematics Subject Classification (1991): 49M25, 65L06;
D O I
暂无
中图分类号
学科分类号
摘要
The convergence rate is determined for Runge-Kutta discretizations of nonlinear control problems. The analysis utilizes a connection between the Kuhn-Tucker multipliers for the discrete problem and the adjoint variables associated with the continuous minimum principle. This connection can also be exploited in numerical solution techniques that require the gradient of the discrete cost function.
引用
收藏
页码:247 / 282
页数:35
相关论文
共 50 条
  • [31] EQUILIBRIA OF RUNGE-KUTTA METHODS
    HAIRER, E
    ISERLES, A
    SANZSERNA, JM
    NUMERISCHE MATHEMATIK, 1990, 58 (03) : 243 - 254
  • [32] Runge-Kutta methods in elastoplasticity
    Büttner, J
    Simeon, B
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (04) : 443 - 458
  • [33] Robust and reliable defect control for Runge-Kutta methods
    Enright, W. H.
    Hayes, Wayne B.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (01):
  • [34] Optimal implicit strong stability preserving Runge-Kutta methods
    Ketcheson, David I.
    Macdonald, Colin B.
    Gottlieb, Sigal
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (02) : 373 - 392
  • [35] Optimal Runge-Kutta methods for first order pseudospectral operators
    Mead, JL
    Renaut, RA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (01) : 404 - 419
  • [36] Forward, tangent linear, and adjoint Runge-Kutta methods in KPP-2.2
    Miehe, Philipp
    Sandu, Adrian
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 3, PROCEEDINGS, 2006, 3993 : 120 - 127
  • [37] Optimal runge-kutta methods for first order pseudospectral operators
    Coll. of Oceanic and Atmosph. Sci., Oregon State University, Corvallis, OR 97331-5503, United States
    不详
    J. Comput. Phys., 1 (404-419):
  • [38] Optimal implicit exponentially-fitted Runge-Kutta methods
    Vanden Berghe, G
    Ixaru, LG
    Van Daele, M
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 140 (03) : 346 - 357
  • [39] Parallel linear system solvers for Runge-Kutta methods
    vanderHouwen, PJ
    deSwart, JJB
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (1-2) : 157 - 181
  • [40] Parallel linear system solvers for Runge-Kutta methods
    P. J. van der Houwen
    J. J. B. de Swart
    Advances in Computational Mathematics, 1997, 7 : 157 - 181