Robust inference for nonlinear regression models

被引:0
|
作者
Ana M. Bianco
Paula M. Spano
机构
[1] Universidad de Buenos Aires and CONICET,Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales
[2] Ciudad Universitaria,undefined
来源
TEST | 2019年 / 28卷
关键词
Nonlinear regression; MM-procedure; Robust estimation; Robust hypothesis testing; Missing at random; MSC 62F35; MSC 62F10; MSC 62F03;
D O I
暂无
中图分类号
学科分类号
摘要
A family of weighted estimators of the regression parameter under a nonlinear model is introduced. The proposed weighted estimators are computed through a four-step MM-procedure, and the given approach allows for possible missing responses. Under mild conditions, the proposed estimators turn to be consistent and asymptotically normal. A robust Wald-type test statistic based on this family of estimators is also provided, and its asymptotic distribution is derived under the null and contiguous hypotheses. The local robustness of the proposed procedures is studied via the influence function analysis, and the finite sample behaviour of the estimators and tests is investigated through a Monte Carlo study in different contaminated scenarios. An application to an environmental data set illustrates the procedure.
引用
收藏
页码:369 / 398
页数:29
相关论文
共 50 条
  • [1] Robust inference for nonlinear regression models
    Bianco, Ana M.
    Spano, Paula M.
    [J]. TEST, 2019, 28 (02) : 369 - 398
  • [2] Robust inference in conditionally linear nonlinear regression models
    Paige, Robert L.
    Fernando, P. Harshini
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (01) : 158 - 168
  • [3] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (02) : 172 - 184
  • [4] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Jing Yang
    Fang Lu
    Hu Yang
    [J]. Journal of the Korean Statistical Society, 2018, 47 : 172 - 184
  • [5] Robust inference for threshold regression models
    Hidalgo, Javier
    Lee, Jungyoon
    Seo, Myung Hwan
    [J]. JOURNAL OF ECONOMETRICS, 2019, 210 (02) : 291 - 309
  • [6] Robust inference for seemingly unrelated regression models
    Peremans, Kris
    Van Aelst, Stefan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 212 - 224
  • [7] Robust tests in nonlinear regression models
    Markatou, M
    Manos, G
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 55 (02) : 205 - 217
  • [8] Assessing Robustness of Inference in Symmetrical Nonlinear Regression Models
    Hernando Vanegas, Luis
    Marina Rondon, Luz
    Cysneiros, Francisco Jose A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (09) : 1692 - 1711
  • [9] A robust class of homoscedastic nonlinear regression models
    Maleki, Mohsen
    Barkhordar, Zahra
    Khodadadi, Zahra
    Wraith, Darren
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (14) : 2765 - 2781
  • [10] Robust inference in nonlinear models with mixed identification strength
    Cheng, Xu
    [J]. JOURNAL OF ECONOMETRICS, 2015, 189 (01) : 207 - 228