Robust inference in nonlinear models with mixed identification strength

被引:15
|
作者
Cheng, Xu [1 ]
机构
[1] Univ Penn, Dept Econ, Philadelphia, PA 19104 USA
关键词
Mixed rates; Nonlinear regression; Robust inference; Uniformity; Weak identification; GENERAL EQUILIBRIUM-MODELS; NUISANCE PARAMETER; LIKELIHOOD INFERENCE; MOMENT INEQUALITIES; GMM ESTIMATION; WEAK; TESTS; RATES; IV; ESTIMATORS;
D O I
10.1016/j.jeconom.2015.07.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper studies inference in regression models composed of nonlinear functions with unknown transformation parameters and loading coefficients that measure the importance of each component. In these models, non-identification and weak identification present in multiple parts of the parameter space, resulting in mixed identification strength for different unknown parameters. This paper proposes robust tests and confidence intervals for sub-vectors and linear functions of the unknown parameters. In particular, the results cover applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. To construct this robust inference procedure, we develop a local limit theory that models mixed identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [1] Fast inference for robust nonlinear mixed-effects models
    Barros Gomes, Jose Clelto
    Aoki, Reiko
    Lachos, Victor Hugo
    Paula, Gilberto Alvarenga
    Russo, Cibele Maria
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (07) : 1568 - 1591
  • [2] Robust inference for nonlinear regression models
    Ana M. Bianco
    Paula M. Spano
    [J]. TEST, 2019, 28 : 369 - 398
  • [3] Robust inference for nonlinear regression models
    Bianco, Ana M.
    Spano, Paula M.
    [J]. TEST, 2019, 28 (02) : 369 - 398
  • [4] Robust inference in conditionally linear nonlinear regression models
    Paige, Robert L.
    Fernando, P. Harshini
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (01) : 158 - 168
  • [5] Identification and inference in nonlinear difference-in-differences models
    Athey, S
    Imbens, GW
    [J]. ECONOMETRICA, 2006, 74 (02) : 431 - 497
  • [6] Statistical inference for calibration points in nonlinear mixed effects models
    Erin E. Blankenship
    Walter W. Stroup
    Sean P. Evans
    Stevan Z. Knezevic
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2003, 8
  • [7] Inference in limited dependent variable models robust to weak identification
    Magnusson, Leandro M.
    [J]. ECONOMETRICS JOURNAL, 2010, 13 (03): : S56 - S79
  • [8] Statistical inference for calibration points in nonlinear mixed effects models
    Blankenship, EE
    Stroup, WW
    Evans, SP
    Knezevic, SZ
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2003, 8 (04) : 455 - 468
  • [9] Robust inference for mixed censored and binary response models with missing covariates
    Sarkar, Angshuman
    Das, Kalyan
    Sinha, Sanjoy K.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 1836 - 1853
  • [10] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (02) : 172 - 184