Robust inference in nonlinear models with mixed identification strength

被引:15
|
作者
Cheng, Xu [1 ]
机构
[1] Univ Penn, Dept Econ, Philadelphia, PA 19104 USA
关键词
Mixed rates; Nonlinear regression; Robust inference; Uniformity; Weak identification; GENERAL EQUILIBRIUM-MODELS; NUISANCE PARAMETER; LIKELIHOOD INFERENCE; MOMENT INEQUALITIES; GMM ESTIMATION; WEAK; TESTS; RATES; IV; ESTIMATORS;
D O I
10.1016/j.jeconom.2015.07.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper studies inference in regression models composed of nonlinear functions with unknown transformation parameters and loading coefficients that measure the importance of each component. In these models, non-identification and weak identification present in multiple parts of the parameter space, resulting in mixed identification strength for different unknown parameters. This paper proposes robust tests and confidence intervals for sub-vectors and linear functions of the unknown parameters. In particular, the results cover applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. To construct this robust inference procedure, we develop a local limit theory that models mixed identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [31] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    [J]. 2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [32] Robust nonlinear system identification using neural-network models
    Lu, SW
    Basar, T
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (03): : 407 - 429
  • [33] Improved inference on a scalar fixed effect of interest in nonlinear mixed-effects models
    Guolo, Annamaria
    Brazzale, Alessandra R.
    Salvan, Alessandra
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1602 - 1613
  • [34] Bayesian inference in nonlinear mixed-effects models using normal independent distributions
    Lachos, Victor H.
    Castro, Luis M.
    Dey, Dipak K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 237 - 252
  • [35] Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference
    Liu, Zhonghua
    Ye, Ting
    Sun, Baoluo
    Schooling, Mary
    Tchetgen, Eric Tchetgen
    [J]. BIOMETRICS, 2023, 79 (03) : 2208 - 2219
  • [36] Robust and Adaptive Two-stage Designs in Nonlinear Mixed Effect Models
    Fayette, Lucie
    Leroux, Romain
    Mentre, France
    Seurat, Jeremy
    [J]. AAPS JOURNAL, 2023, 25 (04):
  • [37] Robust and Adaptive Two-stage Designs in Nonlinear Mixed Effect Models
    Lucie Fayette
    Romain Leroux
    France Mentré
    Jérémy Seurat
    [J]. The AAPS Journal, 25
  • [38] Variational Inference for Nonlinear Structural Identification
    Lund, Alana
    Bilionis, Ilias
    Dyke, Shirley J.
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 : 1218 - 1231
  • [39] ESTIMATION AND INFERENCE IN NONLINEAR STRUCTURAL MODELS
    BERNDT, EK
    HALL, BH
    HALL, RE
    HAUSMAN, JA
    [J]. ANNALS OF ECONOMIC AND SOCIAL MEASUREMENT, 1974, 3 (04): : 653 - 665
  • [40] On uniform inference in nonlinear models with endogeneity
    Khan, Shakeeb
    Nekipelov, Denis
    [J]. JOURNAL OF ECONOMETRICS, 2024, 240 (02)