Robust inference for nonlinear regression models

被引:0
|
作者
Ana M. Bianco
Paula M. Spano
机构
[1] Universidad de Buenos Aires and CONICET,Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales
[2] Ciudad Universitaria,undefined
来源
TEST | 2019年 / 28卷
关键词
Nonlinear regression; MM-procedure; Robust estimation; Robust hypothesis testing; Missing at random; MSC 62F35; MSC 62F10; MSC 62F03;
D O I
暂无
中图分类号
学科分类号
摘要
A family of weighted estimators of the regression parameter under a nonlinear model is introduced. The proposed weighted estimators are computed through a four-step MM-procedure, and the given approach allows for possible missing responses. Under mild conditions, the proposed estimators turn to be consistent and asymptotically normal. A robust Wald-type test statistic based on this family of estimators is also provided, and its asymptotic distribution is derived under the null and contiguous hypotheses. The local robustness of the proposed procedures is studied via the influence function analysis, and the finite sample behaviour of the estimators and tests is investigated through a Monte Carlo study in different contaminated scenarios. An application to an environmental data set illustrates the procedure.
引用
收藏
页码:369 / 398
页数:29
相关论文
共 50 条
  • [41] Improved likelihood-based inference in Birnbaum-Saunders nonlinear regression models
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Moreno-Arenas, German
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (19-20) : 8185 - 8200
  • [42] Optimal Inference in a Class of Regression Models
    Armstrong, Timothy B.
    Kolesar, Michal
    [J]. ECONOMETRICA, 2018, 86 (02) : 655 - 683
  • [43] Quantile inference for heteroscedastic regression models
    Chan, Ngai Hang
    Zhang, Rong-Mao
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2079 - 2090
  • [44] Inference in regression models with many regressors
    Anatolyev, Stanislav
    [J]. JOURNAL OF ECONOMETRICS, 2012, 170 (02) : 368 - 382
  • [45] Uniform Inference in Predictive Regression Models
    Chen, Willa W.
    Deo, Rohit S.
    Yi, Yanping
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 525 - 533
  • [46] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [47] An LMI-Based Robust Nonlinear Adaptive Observer for Disturbed Regression Models
    Rios, Hector
    de Loza, Alejandra Ferreira
    Efimov, Denis
    Franco, Roberto
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) : 4035 - 4041
  • [48] Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox
    Kleibergen, F
    [J]. JOURNAL OF ECONOMETRICS, 2004, 123 (02) : 227 - 258
  • [49] Designing robust regression models
    Viswanathan, M
    Rainamohanarao, K
    [J]. FOUNDATIONS OF DATA MINING AND KNOWLEDGE DISCOVERY, 2005, 6 : 71 - 86
  • [50] Robust Discovery of Regression Models
    Castle, Jennifer L.
    Doornik, Jurgen A.
    Hendry, David F.
    [J]. ECONOMETRICS AND STATISTICS, 2023, 26 : 31 - 51