Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii type: the time-dependent case

被引:0
|
作者
Grube, Sebastian [1 ]
机构
[1] Bielefeld Univ, Fac Math, Bielefeld, Germany
关键词
McKean-Vlasov stochastic differential equation; Pathwise uniqueness; Yamada-Watanabe theorem; Nonlinear Fokker-Planck-Kolmogorov equation; FOKKER-PLANCK EQUATIONS; UNIQUENESS; DEGENERATE;
D O I
10.1007/s00028-024-00970-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a large class of nonlinear FPKEs with coefficients of Nemytskii type depending explicitly on time and space, for which it is known that there exists a sufficiently Sobolev-regular Schwartz-distributional solution u is an element of L 1 boolean AND L infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in L<^>1\cap L<^>\infty $$\end{document} . We show that there exists a unique strong solution to the associated McKean-Vlasov SDE with time marginal law densities u. In particular, every weak solution of this equation with time marginal law densities u can be written as a functional of the driving Brownian motion. Moreover, plugging any Brownian motion into this very functional produces a weak solution with time marginal law densities u.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Soliton solutions of some nonlinear evolution equations with time-dependent coefficients
    HITENDER KUMAR
    ANAND MALIK
    FAKIR CHAND
    [J]. Pramana, 2013, 80 : 361 - 367
  • [42] Soliton solutions of some nonlinear evolution equations with time-dependent coefficients
    Kumar, Hitender
    Malik, Anand
    Chand, Fakir
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (02): : 361 - 367
  • [43] Sunflower model: time-dependent coefficients and topology of the periodic solutions set
    Bisconti, Luca
    Spadini, Marco
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06): : 1573 - 1590
  • [44] Analytical Solutions for Advection-Dispersion Equations with Time-Dependent Coefficients
    Deng, Baoqing
    Long, Fei
    Gao, Jing
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2019, 24 (08)
  • [45] Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients
    Wazwaz, Abdul-Majid
    Triki, Houria
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) : 1122 - 1126
  • [46] Similarity solutions of the Fokker-Planck equation with time-dependent coefficients
    Lin, W-T
    Ho, C-L
    [J]. ANNALS OF PHYSICS, 2012, 327 (02) : 386 - 397
  • [47] ASYMPTOTIC-BEHAVIOR IN TIME OF KDV TYPE EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS
    BISOGNIN, V
    MENZALA, GP
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (06) : 85 - 89
  • [48] Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain
    Boudin, Laurent
    Grandmont, Celine
    Moussa, Ayman
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1317 - 1340
  • [49] TIME-DEPENDENT COEFFICIENTS IN A COX-TYPE REGRESSION-MODEL
    MURPHY, SA
    SEN, PK
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 39 (01) : 153 - 180
  • [50] Singular 1-soliton and Periodic Solutions to the Nonlinear Fisher-Type Equation with Time-Dependent Coefficients
    Ozkan Guner
    Ahmet Bekir
    [J]. Communications in Theoretical Physics, 2016, 65 (04) : 405 - 409