Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii type: the time-dependent case

被引:0
|
作者
Grube, Sebastian [1 ]
机构
[1] Bielefeld Univ, Fac Math, Bielefeld, Germany
关键词
McKean-Vlasov stochastic differential equation; Pathwise uniqueness; Yamada-Watanabe theorem; Nonlinear Fokker-Planck-Kolmogorov equation; FOKKER-PLANCK EQUATIONS; UNIQUENESS; DEGENERATE;
D O I
10.1007/s00028-024-00970-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a large class of nonlinear FPKEs with coefficients of Nemytskii type depending explicitly on time and space, for which it is known that there exists a sufficiently Sobolev-regular Schwartz-distributional solution u is an element of L 1 boolean AND L infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in L<^>1\cap L<^>\infty $$\end{document} . We show that there exists a unique strong solution to the associated McKean-Vlasov SDE with time marginal law densities u. In particular, every weak solution of this equation with time marginal law densities u can be written as a functional of the driving Brownian motion. Moreover, plugging any Brownian motion into this very functional produces a weak solution with time marginal law densities u.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Strong Averaging Principle for Two-Time-Scale Stochastic McKean-Vlasov Equations
    Xu, Jie
    Liu, Juanfang
    Liu, Jicheng
    Miao, Yu
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S837 - S867
  • [22] Strong Averaging Principle for Two-Time-Scale Stochastic McKean-Vlasov Equations
    Jie Xu
    Juanfang Liu
    Jicheng Liu
    Yu Miao
    [J]. Applied Mathematics & Optimization, 2021, 84 : 837 - 867
  • [23] Nonlinear McKean-Vlasov Diffusions under the Weak Hormander Condition with Quantile-Dependent Coefficients
    Hu, Yaozhong
    Kouritzin, Michael A.
    Zheng, Jiayu
    [J]. POTENTIAL ANALYSIS, 2024, 60 (03) : 1093 - 1119
  • [24] Nonlinear McKean-Vlasov Diffusions under the Weak Hörmander Condition with Quantile-Dependent Coefficients
    Yaozhong Hu
    Michael A. Kouritzin
    Jiayu Zheng
    [J]. Potential Analysis, 2024, 60 : 1093 - 1119
  • [25] On optimal solutions of general continuous-singular stochastic control problem of McKean-Vlasov type
    Guenane, Lina
    Hafayed, Mokhtar
    Meherrem, Shahlar
    Abbas, Syed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6498 - 6516
  • [26] Strong approximation of non-autonomous time-changed McKean-Vlasov stochastic differential equations
    Wen, Xueqi
    Li, Zhi
    Xu, Liping
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [27] EXACT TIME-DEPENDENT SOLUTIONS OF THE VLASOV-POISSON EQUATIONS
    SYMON, KR
    LEWIS, HR
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 844 - 844
  • [28] EXACT TIME-DEPENDENT SOLUTIONS OF THE VLASOV-POISSON EQUATIONS
    LEWIS, HR
    SYMON, KR
    [J]. PHYSICS OF FLUIDS, 1984, 27 (01) : 192 - 196
  • [29] Blow up of Solutions for a Nonlinear Petrovsky Type Equation with Time-dependent Coefficients
    Xiao-xiao ZHENG
    Ya-dong SHANG
    Xiao-ming PENG
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (04) : 836 - 846
  • [30] Blow up of Solutions for a Nonlinear Petrovsky Type Equation with Time-dependent Coefficients
    Zheng, Xiao-xiao
    Shang, Ya-dong
    Peng, Xiao-ming
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 836 - 846