Ion implantation damage and crystalline-amorphous transition in Ge

被引:0
|
作者
G. Impellizzeri
S. Mirabella
M. G. Grimaldi
机构
[1] Università di Catania,MATIS IMM
来源
Applied Physics A | 2011年 / 103卷
关键词
Collision Cascade; Implantation Energy; Displace Atom; Damage Energy; Rutherford Backscatter Spec;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental studies on the damage produced in (100) Ge substrates by implantation of Ge+ ions at different energies (from 25 to 600 keV), fluences (from 2×1013 to 4×1014 cm−2) and temperature (room temperature, RT, or liquid-nitrogen temperature, LN2T) have been performed by using the Rutherford backscattering spectrometry technique. We demonstrated that the higher damage rate of Ge with respect to Si is due to both the high stopping power of germanium atoms and the low mobility of point defects within the collision cascades. The amorphization of Ge has been modeled by employing the critical damage energy density model in a large range of implantation energies and fluences both at RT and LN2T. The experimental results for implantation at LN2T were fitted using a critical damage energy density of ∼1 eV/atom. A fictitious value of ∼5 eV/atom was obtained for the samples implanted at RT, essentially because at RT the damage annihilation plays a non-negligible role against the crystalline–amorphous transition phase. The critical damage energy density model was found to stand also for other ions implanted in crystalline Ge (Ar+ and Ga+).
引用
下载
收藏
页码:323 / 328
页数:5
相关论文
共 50 条
  • [41] Role of ion mass on damage accumulation during ion implantation in Ge
    Napolitani, E.
    Bruno, E.
    Bisognin, G.
    Mastromatteo, M.
    De Salvador, D.
    Scapellato, G. G.
    Boninelli, S.
    Priolo, F.
    Privitera, V.
    Carnera, A.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01): : 118 - 121
  • [42] Surface orientation effects in crystalline-amorphous silicon interfaces
    Nolan, Michael
    Legesse, Merid
    Fagas, Giorgos
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (43) : 15173 - 15179
  • [43] Novel crystalline amorphous oxide materials for optoelectronics by ion implantation
    Hosono, H
    PROCEEDINGS OF THE 6TH INTERNATIONAL OTTO SCHOTT COLLOQUIUM, 1998, : 19 - 27
  • [44] Crystalline-amorphous contrast formation in thermally crystallized SiC
    Ruttensperger, B.
    Krotz, G.
    Mueller, G.
    Derst, G.
    Kalbitzer, S.
    Journal of Non-Crystalline Solids, 1991, 137-38 (pt 1) : 635 - 638
  • [45] Atomistic Design of High Strength Crystalline-Amorphous Nanocomposites
    Yamamoto, Shin
    Wang, Yun-Jiang
    Ishii, Akio
    Ogata, Shigenobu
    MATERIALS TRANSACTIONS, 2013, 54 (09) : 1592 - 1596
  • [46] AMORPHOUS CRYSTALLINE TRANSITION IN ION-IMPLANTED SEMICONDUCTORS
    BALKANSKI, M
    MORHANGE, JF
    KANELLIS, G
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-WIESBADEN, 1981, 127 (02): : 207 - 222
  • [47] Crystallization behavior of crystalline-amorphous diblock copolymers consisting of a rubbery amorphous block
    Nandan, Bhanu
    Hsu, Jen-Yung
    Chen, Hsin-Lung
    POLYMER REVIEWS, 2006, 46 (02) : 143 - 172
  • [48] Atomic and electronic structure of crystalline-amorphous carbon interfaces
    Kopidakis, G.
    Remediakis, I. N.
    Fyta, M. G.
    Kelires, P. C.
    DIAMOND AND RELATED MATERIALS, 2007, 16 (10) : 1875 - 1881
  • [49] Blood compatibility of polypropylene surfaces in relation to the crystalline-amorphous microstructure
    Kawamoto, N
    Mori, H
    Terano, M
    Yui, N
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1997, 8 (11) : 859 - 877
  • [50] Nanoporosity induced by ion implantation in deposited amorphous Ge thin films
    Romano, L.
    Impellizzeri, G.
    Bosco, L.
    Ruffino, F.
    Miritello, M.
    Grimaldi, M. G.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)