Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

被引:0
|
作者
H. J. de Vega
N. G. Sanchez
机构
[1] Sorbonne Universités,LPTHE CNRS UMR 7589
[2] Université Pierre et Marie Curie UPMC Paris VI,Observatoire de Paris, LERMA CNRS UMR 8112
[3] Observatoire de Paris PSL Research University,undefined
[4] Sorbonne Universités UPMC Paris VI,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Thomas–Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r_h $$\end{document}, mass Mh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_h $$\end{document}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for Mh≳2.3×106M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_h \gtrsim 2.3 \times 10^6 \; M_\odot $$\end{document} and effective temperatures T0>0.017\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_0 > 0.017 $$\end{document} K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6×106M⊙≳Mh≳Mh,min≃3.10×104(2keV/m)165M⊙,T0<0.011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1.6 \times 10^6 \; M_\odot \gtrsim M_h \gtrsim M_{h,\mathrm{min}} \simeq 3.10 \times 10^4 \; (2 \, {\mathrm{keV}}/m)^{\! \! \frac{16}{5}} \; M_\odot , \; T_0 < 0.011 $$\end{document} K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_0 = 0 $$\end{document} degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r_h $$\end{document}, the squared velocity v2(rh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v^2(r_h) $$\end{document} and the temperature T0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_0 $$\end{document} turn to exhibit square-root of Mh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_h $$\end{document}scaling laws. The normalized density profiles ρ(r)/ρ(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho (r)/\rho (0) $$\end{document} and the normalized velocity profiles v2(r)/v2(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v^2(r)/ v^2(0) $$\end{document} are universal functions of r/rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r/r_h $$\end{document} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 106≳Mh≥Mh,min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 10^6 \gtrsim M_h \ge M_{h,\mathrm{min}} $$\end{document}, the equation of state is galaxy mass dependent and the density and velocity profiles are not anymore universal, accounting to the quantum physics of the self-gravitating WDM fermions in the compact regime (near, but not at, the degenerate state). It would be extremely interesting to dispose of dwarf galaxy observations which could check these quantum effects.
引用
收藏
相关论文
共 50 条
  • [41] Quantum scales of galaxies from ultralight dark matter
    Lee, Jae-Weon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 83 (12) : 1013 - 1018
  • [42] Quantum Scales of Galaxies from Ultralight Dark Matter
    Lee, Jae-Weon
    arXiv, 2023,
  • [43] On the origin of Sersic profiles of galaxies and Einasto profiles of dark-matter halos
    Nipoti, Carlo
    FORMATION AND EVOLUTION OF GALAXY OUTSKIRTS, 2016, 11 (S321): : 87 - 89
  • [44] Cuspy dark matter density profiles in massive dwarf galaxies
    Cooke, Lauren H.
    Levy, Rebecca C.
    Bolatto, Alberto D.
    Simon, Joshua D.
    Newman, Andrew B.
    Teuben, Peter
    Davey, Brandon D.
    Wright, Melvyn
    Tarantino, Elizabeth
    Lenkic, Laura
    Villanueva, Vicente
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (01) : 1012 - 1031
  • [45] DARK MATTER INFLUENCE ON VELOCITY DISPERSION PROFILES OF CLUSTERS OF GALAXIES
    NAVARRO, JF
    LAMBAS, DG
    ASTROPHYSICS AND SPACE SCIENCE, 1987, 133 (02) : 241 - 252
  • [46] Comparison of quantum simulation methods for computing equation of state of warm dense matter and plasmas
    Whitley, Heather
    Zhang, Shuai
    Gaffney, Jim
    Yang, Lin
    Pask, John
    Militzer, Burkhard
    Caspersen, Kyle
    Daene, Markus
    Marshall, Michelle
    Lazicki, Amy
    London, Richard
    Swift, Damian
    Johnson, Walter
    Klepeis, John
    Sterne, Phil
    Martin, Madison
    Kostinski, Natalie
    Maddox, Brian
    Sharma, Abhiraj
    Suryanarayana, Phanish
    Kritcher, Andrea
    Castor, John
    Nilsen, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [47] The effects of QCD equation of state on the relic density of WIMP dark matter
    Drees, Manuel
    Hajkarim, Fazlollah
    Schmitz, Ernany Rossi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (06):
  • [48] DYNAMIC EFFECTS OF DARK MATTER IN SYSTEMS OF GALAXIES
    NAVARRO, JF
    LAMBAS, DG
    SERSIC, JL
    ASTROPHYSICS AND SPACE SCIENCE, 1986, 123 (01) : 117 - 123
  • [49] Measuring the Quantum State of Dark Matter
    Marsh, David J. E.
    ANNALEN DER PHYSIK, 2024, 536 (01)
  • [50] Void scaling and void profiles in cold dark matter models
    Arbabi-Bidgoli, S
    Müller, V
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 332 (01) : 205 - 214