Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

被引:0
|
作者
H. J. de Vega
N. G. Sanchez
机构
[1] Sorbonne Universités,LPTHE CNRS UMR 7589
[2] Université Pierre et Marie Curie UPMC Paris VI,Observatoire de Paris, LERMA CNRS UMR 8112
[3] Observatoire de Paris PSL Research University,undefined
[4] Sorbonne Universités UPMC Paris VI,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Thomas–Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r_h $$\end{document}, mass Mh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_h $$\end{document}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for Mh≳2.3×106M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_h \gtrsim 2.3 \times 10^6 \; M_\odot $$\end{document} and effective temperatures T0>0.017\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_0 > 0.017 $$\end{document} K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6×106M⊙≳Mh≳Mh,min≃3.10×104(2keV/m)165M⊙,T0<0.011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1.6 \times 10^6 \; M_\odot \gtrsim M_h \gtrsim M_{h,\mathrm{min}} \simeq 3.10 \times 10^4 \; (2 \, {\mathrm{keV}}/m)^{\! \! \frac{16}{5}} \; M_\odot , \; T_0 < 0.011 $$\end{document} K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_0 = 0 $$\end{document} degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r_h $$\end{document}, the squared velocity v2(rh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v^2(r_h) $$\end{document} and the temperature T0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_0 $$\end{document} turn to exhibit square-root of Mh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_h $$\end{document}scaling laws. The normalized density profiles ρ(r)/ρ(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho (r)/\rho (0) $$\end{document} and the normalized velocity profiles v2(r)/v2(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v^2(r)/ v^2(0) $$\end{document} are universal functions of r/rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r/r_h $$\end{document} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 106≳Mh≥Mh,min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 10^6 \gtrsim M_h \ge M_{h,\mathrm{min}} $$\end{document}, the equation of state is galaxy mass dependent and the density and velocity profiles are not anymore universal, accounting to the quantum physics of the self-gravitating WDM fermions in the compact regime (near, but not at, the degenerate state). It would be extremely interesting to dispose of dwarf galaxy observations which could check these quantum effects.
引用
收藏
相关论文
共 50 条
  • [21] Dark matter profiles in clusters of galaxies: a phenomenological approach
    Arieli, Y
    Rephaeli, Y
    NEW ASTRONOMY, 2003, 8 (06): : 517 - 528
  • [22] Maximum feedback and dark matter profiles of dwarf galaxies
    Gnedin, OY
    Zhao, H
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 333 (02) : 299 - 306
  • [23] Density, temperature and dark matter profiles in clusters of galaxies
    Neto, GBL
    Laganá, TF
    Durret, F
    PROCEEDINGS OF THE X-RAY UNIVERSE 2005, VOLS 1 AND 2, 2006, 604 : 747 - +
  • [24] Universal subhalo accretion in cold and warm dark matter cosmologies
    Kubik, Bogna
    Libeskind, Noam I.
    Knebe, Alexander
    Courtois, Helene
    Yepes, Gustavo
    Gottloeber, Stefan
    Hoffman, Yehuda
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (04) : 4099 - 4109
  • [25] Dark matter equation of motion and density profiles
    Mondragon, AR
    Allen, RE
    PARTICLES, STRINGS AND COSMOLOGY, PROCEEDINGS, 2001, : 405 - 408
  • [26] Galaxy Rotation Curves and Universal Scaling Relations: Comparison between Phenomenological and Fermionic Dark Matter Profiles
    Krut, A.
    Argueelles, C. R.
    Chavanis, P. -H.
    Rueda, J. A.
    Ruffini, R.
    ASTROPHYSICAL JOURNAL, 2023, 945 (01):
  • [27] QCD equation of state and dark matter
    Hindmarsh, M
    Philipsen, O
    STRONG AND ELECTROWEAK MATTER 2004, PROCEEDINGS, 2005, : 361 - 365
  • [28] Measuring the dark matter equation of state
    Serra, Ana Laura
    Dominguez Romero, Mariano Javier L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (01) : L74 - L77
  • [29] The equation of state of dark matter superfluids
    Sharma, Anushrut
    Khoury, Justin
    Lubensky, Tom
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (05):
  • [30] Substructure and halo density profiles in a warm dark matter cosmology
    Colín, P
    Avila-Reese, V
    Valenzuela, O
    GALAXY DISKS AND DISK GALAXIES, 2001, 230 : 651 - 652