Controllability Results for Nonlinear Fractional-Order Dynamical Systems

被引:0
|
作者
K. Balachandran
V. Govindaraj
L. Rodríguez-Germa
J. J. Trujillo
机构
[1] Bharathiar University,Department of Mathematics
[2] Universidad de La Laguna,Departamento de Análisis Matemático
关键词
Controllability; Fractional Differential Equations; Mittag–Leffler Matrix Function; Schaefer’s Fixed-Point Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<α<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.
引用
下载
收藏
页码:33 / 44
页数:11
相关论文
共 50 条
  • [41] Periodic disturbance rejection for fractional-order dynamical systems
    Giuseppe Fedele
    Andrea Ferrise
    Fractional Calculus and Applied Analysis, 2015, 18 : 603 - 620
  • [42] Controllability of fractional order damped dynamical systems with distributed delays
    Arthi, G.
    Park, Ju H.
    Suganya, K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 165 : 74 - 91
  • [43] Nonexistence of invariant manifolds in fractional-order dynamical systems
    Bhalekar, Sachin
    Patil, Madhuri
    NONLINEAR DYNAMICS, 2020, 102 (04) : 2417 - 2431
  • [44] PERIODIC DISTURBANCE REJECTION FOR FRACTIONAL-ORDER DYNAMICAL SYSTEMS
    Fedele, Giuseppe
    Ferrise, Andrea
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 603 - 620
  • [45] Controllability of nonlinear fractional delay dynamical systems with prescribed controls
    Ding, Xiao-Li
    Nieto, Juan J.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (01): : 1 - 18
  • [46] PASSIVITY AND PASSIVATION OF FRACTIONAL-ORDER NONLINEAR SYSTEMS
    Han, Zhimin
    Wang, Yi
    Ji, Quanbao
    Alodhaibi, Sultan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [47] Parametric identification of fractional-order nonlinear systems
    Mani, Ajith Kuriakose
    Narayanan, M. D.
    Sen, Mihir
    NONLINEAR DYNAMICS, 2018, 93 (02) : 945 - 960
  • [48] Contraction analysis for fractional-order nonlinear systems
    Gonzalez-Olvera, Marcos A.
    Tang, Yu
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 255 - 263
  • [49] Parametric identification of fractional-order nonlinear systems
    Ajith Kuriakose Mani
    M. D. Narayanan
    Mihir Sen
    Nonlinear Dynamics, 2018, 93 : 945 - 960
  • [50] Fractional-order nonlinear systems with fault tolerance
    Martinez-Fuentes, Oscar
    Melendez-Vazquez, Fidel
    Martinez-Guerra, Rafael
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 6566 - 6571