Controllability Results for Nonlinear Fractional-Order Dynamical Systems

被引:0
|
作者
K. Balachandran
V. Govindaraj
L. Rodríguez-Germa
J. J. Trujillo
机构
[1] Bharathiar University,Department of Mathematics
[2] Universidad de La Laguna,Departamento de Análisis Matemático
关键词
Controllability; Fractional Differential Equations; Mittag–Leffler Matrix Function; Schaefer’s Fixed-Point Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<α<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.
引用
下载
收藏
页码:33 / 44
页数:11
相关论文
共 50 条
  • [31] New results on stability and stabilization of a class of nonlinear fractional-order systems
    Liping Chen
    Yigang He
    Yi Chai
    Ranchao Wu
    Nonlinear Dynamics, 2014, 75 : 633 - 641
  • [32] On controllability and observability of a class of fractional-order switched systems with impulse
    Yan, Jiayuan
    Hu, Bin
    Guan, Zhi-Hong
    Li, Tao
    Zhang, Ding-Xue
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2023, 50
  • [33] Tuning Algorithm for Modeling and controllability of fractional-order control systems
    Yan, Zhe
    Che, Shutao
    Cui, Xiaoming
    Zhang, Zhiqiang
    Zhang, Chao
    ADVANCED RESEARCH ON ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL, PTS 1 AND 2, 2012, 424-425 : 445 - 447
  • [34] Controllability of systems of fractional-order α ∈ (1,2] with delay
    Srinivasan, V.
    Sukavanam, N.
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10516 - 10520
  • [35] Controllability for a class of fractional-order neutral evolution control systems
    Sakthivel, R.
    Mahmudov, N. I.
    Nieto, Juan. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10334 - 10340
  • [36] Fractional-Order Echo State Network Backstepping Control of Fractional-Order Nonlinear Systems
    Liu, Heng
    Shi, Jiangteng
    Cao, Jinde
    Pan, Yongping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 519 - 532
  • [37] Nonexistence of invariant manifolds in fractional-order dynamical systems
    Sachin Bhalekar
    Madhuri Patil
    Nonlinear Dynamics, 2020, 102 : 2417 - 2431
  • [38] First attempt of barrier functions for Caputo's fractional-order nonlinear dynamical systems
    Zheren ZHU
    Pengfei HUANG
    Xinmin ZHANG
    Yi CHAI
    Zhihuan SONG
    Science China(Information Sciences), 2023, (07) : 313 - 314
  • [39] Generation and Nonlinear Dynamical Analyses of Fractional-Order Memristor-Based Lorenz Systems
    Xi, Huiling
    Li, Yuxia
    Huang, Xia
    ENTROPY, 2014, 16 (12) : 6240 - 6253
  • [40] First attempt of barrier functions for Caputo's fractional-order nonlinear dynamical systems
    Zhu, Zheren
    Huang, Pengfei
    Zhang, Xinmin
    Chai, Yi
    Song, Zhihuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (07)