Controllability Results for Nonlinear Fractional-Order Dynamical Systems

被引:0
|
作者
K. Balachandran
V. Govindaraj
L. Rodríguez-Germa
J. J. Trujillo
机构
[1] Bharathiar University,Department of Mathematics
[2] Universidad de La Laguna,Departamento de Análisis Matemático
关键词
Controllability; Fractional Differential Equations; Mittag–Leffler Matrix Function; Schaefer’s Fixed-Point Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<α<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.
引用
下载
收藏
页码:33 / 44
页数:11
相关论文
共 50 条
  • [1] Controllability Results for Nonlinear Fractional-Order Dynamical Systems
    Balachandran, K.
    Govindaraj, V.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 33 - 44
  • [2] Controllability of nonlinear higher order fractional dynamical systems
    Balachandran, K.
    Govindaraj, V.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    NONLINEAR DYNAMICS, 2013, 71 (04) : 605 - 612
  • [3] Controllability of nonlinear higher order fractional dynamical systems
    K. Balachandran
    V. Govindaraj
    L. Rodríguez-Germá
    J. J. Trujillo
    Nonlinear Dynamics, 2013, 71 : 605 - 612
  • [4] Controllability of Nonlinear Stochastic Fractional Higher Order Dynamical Systems
    R. Mabel Lizzy
    K. Balachandran
    Yong-Ki Ma
    Fractional Calculus and Applied Analysis, 2019, 22 : 1063 - 1085
  • [5] IDENTIFICATION OF FRACTIONAL-ORDER DYNAMICAL SYSTEMS AS A NONLINEAR PROBLEM
    Dorcak, E.
    Terpak, J.
    Papajova, M.
    Pivka, L.
    PROCEEDINGS OF 11TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE, 2010, 2010, : 335 - 338
  • [6] CONTROLLABILITY OF NONLINEAR STOCHASTIC FRACTIONAL HIGHER ORDER DYNAMICAL SYSTEMS
    Lizzy, R. Mabel
    Balachandran, K.
    Ma, Yong-Ki
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 1063 - 1085
  • [7] Controllability of nonlinear fractional dynamical systems
    Balachandran, K.
    Park, J. Y.
    Trujillo, J. J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1919 - 1926
  • [8] A Technique for Studying a Class of Fractional-Order Nonlinear Dynamical Systems
    Mahmoud, Gamal M.
    Farghaly, Ahmed A. M.
    Shoreh, A. A. -H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [9] CONTROLLABILITY OF NONLINEAR FRACTIONAL DELAY DYNAMICAL SYSTEMS
    Nirmala, R. Joice
    Balachandran, K.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 87 - 104
  • [10] Approximate controllability of nonlinear fractional dynamical systems
    Sakthivel, R.
    Ganesh, R.
    Ren, Yong
    Anthoni, S. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (12) : 3498 - 3508